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Introduction

This text surveys part of my work after my Ph.D thesis. The results presented focus
on dynamical aspects infinite groups, and related geometric and analytic aspects. The
primary focus is on countable discrete groups, but some results also deal with larger groups
(endowed or not with a topology). No formal proofs are given, but some ideas of proof are
discussed. The text is divided into three chapters corresponding to three different themes;
each chapter is (almost) self-contained.

Chapter 1 is devoted to the so called Chabauty dynamics of groups and its applications.
Most of my work in this area is part of a long-term collaboration with Adrien Le Boudec,
and also includes collaborations with him and Pierre-Emmanuel Caprace and with Todor
Tsankov. For every discrete or locally compact group G, the set of subgroups of G, denoted
Sub(G) is naturally a compact space when endowed with the Chabauty topology, on which
the group G acts by conjugation. This action can be seen as a (topological) dynamical
system intrinsically attached to any group, which carries information about it. For example
its fixed points are just the normal subgroups of G. When looking at that action from
the point of view of topological dynamics, natural generalisations of normal subgroups
appear: confined subgroups, and the related uniformly recurrent subgroups. These arise
as stabilisers of group actions on compact spaces. We have developed the study of these
notions, providing various classes of groups for which they can be completely understood,
and giving applications to problems of different nature. For example, we provide general
conditions for discrete and locally compact groups acting faithfully by homeomorphisms on
a topological space, that imply that the group acts freely on its Furstenberg boundary [1,4]:
in the discrete case, by results of M. Kalantar and M. Kennedy, this property is equivalent
to the simplicity of the reduced group C∗-algebra; our results elucidate these properties
for some well-studied groups. More applications concern rigidity phenomena for various
groups of dynamical origin, which give restrictions on the possible homomorphisms of such
groups to other groups of homeomorphisms [2, 3]. Using confined subgroups as a tool,
we study a new type of group property, that we call Schreier growth gap, that provides a
quantitative obstruction for a finitely generated group to admit faithful actions with small
growth of orbits, and establish various instances of this phenomenon [2, 3, 5]. Finally we
establish a connection between the confined subgroups of a groups and its highly transitive
actions; among applications we classify all highly transitive actions of a family of finitely
generated groups (namely the Higman-Thompson groups), which is the first non-trivial
example of such a classification result [6].

Chapter 2 is devoted to the study of group actions on the real line. The work presented
there is part of collaborations with Joaquín Brum, Cristóbal Rivas and Michele Triestino.
The main setting is the study of groups on manifolds of dimension 1 (namely the circle or a
real interval), by homeomorphisms or by diffeomorphisms of a given class Cr, r ≥ 1. Various
restrictions are known for actions by Cr-diffeomorphisms for some r > 1; our main focus is
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on actions on the real line in very low regularity, namely C0 or C1, which are generally more
flexible. In this setting a large part of the litterature is devoted to the problem of discussing
the existence (or non-existence) of a C0 or C1 action for different families of countable
groups: the existence of a faithful C0 action on the line is well-known to be equivalent to
left-orderability of the group. Results addressing the structure and classification of such
actions are somewhat more rare. We introduce some tools and ideas that lead a satisfactory
picture of actions on real intervals by C0 and C1-diffeomorphisms for some classes of groups.
For example we show that every faithful minimal C1 action of a finitely generated solvable
group on a real interval is conjugate to an action by affine transformations on the line
[9], and that for a vast class of groups arising via an action on an interval (including
Thompson’s group F ), the natural defining action is essentially the unique C1 action [8].
In fact these results follow from a comprehensive understanding of the possible C0 actions
of such groups, which turn out to be much richer. We shall put some emphasis on the role
of an object called the harmonic space of G, which is a compact space with a flow (D,Ψ)
associated to any finitely generated group G (whose construction depends on results of
Deroin, Kleptsyn, Navas and Parwani [DKNP13]), unique up to flow equivalence, which
plays a role of moduli space for the actions of G by homeomorphisms on the line up
to semi-conjugacy. Reversing this point of view, we introduce a construction of groups
acting on a class of flows on compact spaces, namely suspension flow of subshifts, which
yields left-orderable groups satisfying various interesting properties (in particular which
are simple and finitely generated, conceptualizing and improving the first construction of
such groups, provided shortly before by J. Hyde and Y. Lodha) [7]. Considering a variant
of this construction, we prove a realisation result for harmonic spaces of group actions on
the line: every suspension flow of a subshift, satisfying mild additional conditions, is flow
equivalent to the harmonic space (D,Ψ) of a finitely generated group [10]. This provides
a source of finitely generated groups satisfying some new phenomena for actions on the
line, related to their rigidity/flexibility properties and to the structure of (path-)connected
components of the space of actions.

Chapter 3 is devoted to my recent work with Volodia Nekrashevych and Tianyi Zheng
[11]. The general context is the study of amenability and the Liouville property for random
walk in the realm of groups of dynamical origin; this was also the main subject of my
Ph.D. The Liouville property is a strengthening of amenability; it means that any bounded
harmonic function on the Cayley graph of the group is constant. We are interested in the
class of contracting self-similar groups. These arise in connection to dynamics, namely as
iterated monodromy groups of spaces endowed with an expanding (branched) self-covering
(for example, post-critically finite rational functions on the Riemann sphere). The study
of amenability of contracting self-similar groups has a long history: this class (or close
relatives) contains the first examples non-elementary amenable groups (the Grigorchuk
groups [Gri84]), and for a long time it remained essentially the only source of such examples.
It is a well-known open question whether all contracting self-similar groups are amenable.
We show amenability of many contracting groups by establishing a connection with the
theory of conformal dimension, an invariant of self-similar metric spaces which is widely
studied in geometric group theory and complex dynamics. Namely, we show that for any
expanding partial self-covering, if the (Ahlfors-regular) conformal dimension of the space
is less than 2, then the iterated monodromy group is Liouville (and hence amenable). This
result recovers all previous amenability results for contracting groups, and applies to many
new examples. In particular, it implies the amenability of the iterated monodromy group
of any post-critically finite rational function whose Julia set is not the whole sphere.
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The three chapters have common aspects, and there could have been other ways of
grouping the results thematically. I have chosen to emphasize in the title one aspect
which appears frequently in my research: the role played by group actions that are non-
free in some strong sense, i.e. where non-trivial elements can admit a large set of fixed
points. Conceiving groups as transformations groups, thus faithfully represented through
their actions, the tension between actions that are free (or close to be free) and non-free
(possibly in some strong sense) appears naturally, giving rise to situations with different
taste and nature. Consider for example the case of finite simple groups, which (up to
exceptions) essentially split in two families: those of Lie type, such as PSL(n, q), and the
alternating groups Alt(n). Compare, say, the natural action of PSL(n, q) on the projective
space P(Fnq ) with the action of Alt(n) on {1, . . . , n}. Neither action is free on the nose,
but in the first case the set of fixed point of a non-trivial element is always a subspace of
strictly smaller dimension, so that its size is at most a proportion qn−1−1

qn−1 ∼
1
q of the space

(in particular it is negligeable for q large); instead the groups Alt(n) contain non-trivial
elements which fix an arbitrary proportion of points. In fact, by a result of R. Guralnick and
K. Magaard [GM98], if a finite simple group admits a primitive action Gy Ω with a non-
trivial element fixing at least 4

7 |Ω| points, then G is isomorphic to an alternating group1.
This is an example of a situation where a form of non-freeness gives rise to structure, a
principle that will appear in various forms.

A large part of what is now called geometric group theory has been developed having
in mind classical examples of groups from geometry and topology (discrete subgroups of
Lie groups, fundamental groups of negatively curved manifolds..). Many of these examples
admit natural actions that satisfy some form of freeness, in a geometric sense (proper
isometric actions) or dynamical sense (topological freeness, essential freeness), and are
suitably studied through those actions. In contrast groups defined by actions that are
very far from being free actions have regularly appeared as source of examples considered
somewhat surprising and “exotic” with respect to these classical examples. Two early
examples of this philosophy are the Grigorchuk groups and Thompson’s groups, and many
more examples can be added.

I started to develop some taste for constructions based on non-free actions during my
Ph.D, whose main results dealt with establishing the Liouville property and amenability of
various groups. Many examples that are interesting in this context have dynamical origin,
and share the feature to be given by an action on a compact space which is highly non-free.
As a consequence the geometry of the group is not easily accessible from the action. The
orbits of action, and the associated Schreier graphs, are tipically more manageable and
play a crucial role in studying the group. Often the combinatorial and geometric structure
of these graphs is determined by some underlying dynamical system, and the difficulty is
to find a more direct relationship between the dynamical properties of the system and the
geometry of the group. The results in Chapter 3 also belong to this line of research.

It was in this context that my collaboration with A. Le Boudec on the topic of Chapter
1 began when I was finishing my Ph.D. The content of our collaboration can be summarized
as the systematic study of non-free actions in topological dynamics. I had just grew up
in a context rich of examples and natural questions in this setting, he came to it from a
different angle, namely the recent developements in C∗-simplicity (due to M. Kalantar, M.
Kennedy, E. Breuillard, N. Ozawa, and himself), and we quickly learned from each other.
Because of the nature of the topic, some of the results we developed turned out to be
particularly suited to study groups of dynamical origin, although not limited to those.

1The use of this example in this context is borrowed from an inspiring talk by Pierre-Emmanuel Caprace.
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Finally non-free actions also play a permeating role in Chapter 2. A fundamental reason
is an old theorem of Hölder, which implies that any group acting freely on a manifold of
dimension 1 is abelian and semiconjugate to a group of isometries. All the richness of the
theory for arbitrary groups therefore comes from non-free actions. This is particularly true
in regularity C0, for which Hölder’s theorem is the starting point of the theory: most other
founding results (the classifications of actions according to their contraction properties, the
theory of Conradian actions..) can be deduced by taking it as a blackbox. Additionally,
the world of group actions on one-manifold is a rich source of examples of group actions
which are very far from being free and arise naturally in other settings. The results in
Chapter 2 are largely based on the use of non-freeness as a source of structure.
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Chapter 1

Chabauty dynamics and
applications

1.1 Introduction and preliminaires
For a locally compact group G, the space Sub(G) of subgroups of G is naturally a compact
space endowed with the Chabauty topology. When G has the discrete topology (which
for us will always be the case with the exception of Theorem 1.3.3) this is simply the
topology induced from the product topology on the space of all subsets 2G. The group G
acts on Sub(G) by conjugation. This intrinsic dynamical system attached to every group
G plays a role in the study of actions of the group G on other spaces, as it governs the
structure of their stabilisers. In the last decade it was progressively realised that the a
systematic study of the action of G on Sub(G) is fruitful and has various applications.
In particular the study of G-invariant and stationnary probability measures on Sub(G)
(named invariant random subgroups in [AGV14]) became a popular topic, see for instance
the survey of Gelander [Gel18] for various applications to the study lattices in Lie groups
and other locally compact groups.

In a long-term collaboration with Adrien Le Boudec, we have developed the study of
the conjugation action of G on Sub(G) from the perspective of topological dynamics, with
various applications to other aspects of infinite groups. Two notions play an important
role in our study.

Definition 1.1.1. A subgroup H ≤ G is confined if the closure of its G-orbit in Sub(G)
does not contain the trivial subgroup {1}.

When G is discrete, by definition of the topology a subgroup H is confined if and only
if there exists a finite subset P of non-trivial elements of G such that gHg−1 ∩ P 6= ∅ for
every g ∈ G.

Definition 1.1.2 (Glasner and Weiss [GW15]). A uniformly recurrent subgroup (URS) is
a closed minimal G-invariant subset of H ⊂ Sub(G).

The two notions are related as follows: if a non-trivial subgroup H belongs to a URS,
then it is confined, and conversely if H is a confined subgroup then the closure of its orbit
contains a non-trivial URS.

The notion of URS was proposed by Glasner and Weiss [GW15] as a topological dy-
namical analogue of invariant random subgroups; it also appears implicitly before, e.g.
in [GNS00, Gri11]. An early appearance of the notion of confined subgroups can be
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traced back to the study of ideals in group algebras of locally finite groups, notably in
[SZ93,Zal95,HZ97]. In particular the terminology was introduced in [HZ97], in the special
case of locally finite groups. While in our early work [1] the focus was more on uniformly
recurrent subgroups, we progressively realised that the notion of confined subgroups is in a
sense more fundamental, both for applications, and because results on uniformly recurrent
subgroups usually pass from some understanding of confined subgroups.

Confined subgroups appear as stabilisers of group actions on compact spaces by home-
omorphisms. Namely, suppose that a group G, for simplicity supposed to be countable
discrete, acts on a compact space X by homeomorphisms (we shall also say that X is a
compact G-space). For x ∈ X, we denote by StabG(x) its stabiliser subgroup, namely the
set of group elements that fix x. In the topological dynamical setting, it is also impor-
tant to consider another subgroup, that we call the germ stabiliser and denote Stab0

G(x),
which is the (normal) subgroup of StabG(x) consisting of elements that fix pointwise some
neighbourhood of x. We thus have a pair of G-equivariant maps

StabG : X → Sub(G), Stab0
G : X → Sub(G).

Neither of these maps is continuous in general (however, they are upper and lower semi-
continuous respectively). It is not difficult to see that the continuity points of StabG are
precisely those where StabG(x) = Stab0

G(x); an application of Baire’s theorem shows that
the latter is a dense Gδ subset of X. This discussion can be extended to second countable
locally compact groups, with suitable changes 1.

Definition 1.1.3. Let X be a compact G-space.

(i) The action of G on X is said to be topologically free if Stab0
G(x) = {1} for every

x ∈ X (equivalently, the set of fixed point Fix(g) of every non-trivial element g has
empty interior).

(ii) We say that the action is nowhere topologically free if for every x ∈ X we have
Stab0

G(x) 6= {1} (equivalently, every point is contained in the interior of Fix(g) for
some non-trivial g).

The following observation is elementary.

Lemma 1.1.4. if Gy X is a nowhere topologically free action on a compact space, then
the germ stabiliser Stab0

G(x) is a confined subgroup of G for every x ∈ X, and hence
StabG(x) as well (since being confined passes to overgroups).

If we further assume that the action of G on X is minimal, then Glasner and Weiss
observed the following.

Proposition 1.1.5 ([GW15]). For every minimal action Gy X of a locally compact group
on a compact space, the closure of the image of the stabiliser map StabG : X → Sub(G)
contains a unique URS, called the stabiliser URS of the action, that we shall denote by
SG(X). Moreover if G is second countable, then StabG(x) ∈ SG(X) for x in the (dense
Gδ) subset of continuity points of the map StabG.

1For a general locally compact group, Stab0
G(x) should be defined as set of elements g with the property

that for every neighbourhood U of g, there exists a neighbourhood V of x, such that every y ∈ V is fixed
by some element of U .
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The stabiliser URS is trivial (that is, reduced to the trivial subgroup {1}) if and only
if the action is topologically free. (If a minimal action is not topologically free, then it is
nowhere topologically free).

A converse of these constructions also holds, as we observed with T. Tsankov [12]: if
G is a locally compact group, then for every closed G-invariant subset H ⊂ Sub(G), there
exists a continuous action of G on a compact space X such that StabG : X → Sub(G) is
everywhere continuous (in particular it is equal to the map Stab0

G) and its image is equal
to H. It follows in particular that every URS of G is the stabiliser URS of some minimal
action on a compact space. The question whether this is the case had been raised by
Glasner and Weiss [GW15] (for finitely generated groups it was independently answered
by Elek [Ele18]). Our proof is a close adaptation of the proof of the classical result of
Veech, that every locally compact group acts freely on some compact space [Vee77] (this
corresponds to the case H = {{1}}).

When G is finitely generated, there is an equivalent interpretation of the action of G on
Sub(G) in terms of Schreier graphs. Recall that for a subgroup H and a finite generating
set S of G, the Schreier graph Γ(G,G/H) is the graph whose vertex set is G/H and with
edges (gH, sgH) for s ∈ S. It is naturally pointed at the trivial coset H, and its edges are
labelled by elements of S. The correspondence H 7→ Γ(G,G/H) identifies the topology on
Sub(G) with the topology induced from the space of marked graphs, where two graphs are
close if large balls around the basepoints are isomorphic as labelled graphs. With this point
of view, a subgroup H is confined if and only if the natural covering map from the Cayely
graph of G to Γ(G,G/H) has uniformly bounded injectivity radius; that is, Γ(G,G/H)
does not contain embedded copies of arbitrarily large balls in the Cayley graph of G. This
characterisation will be useful in some situations, as it allows to use large-scale geometric
invariants of graphs (such as volume growth and asymptotic dimension) to make confined
subgroups appear.

The results discussed in this chapter are based on the study of confined subgroups
or (URSs) in various families of groups, although this is not always apparent from the
statements. They have been chosen so as to illustrate various types of applications to
other aspects of groups, rather than focusing on the mere study of the conjugation action
of G on Sub(G).

1.2 Confined subgroups and groups of homeomorphisms
This section surveys part of the results contained in [1, 2, 3]. A common denominator
of these results is that they apply to groups naturally given by an action G y X by
homeomorphisms on some space, and the properties of this action are used to understand
the confined subgroups and the URSs of G.

1.2.1 A general tool

The essential ingredient of our method is a general result that applies to groups G ≤
Homeo(X) given by a faithful action by homeomorphisms of Hausdorff space X. Given a
non-empty open set U ⊂ X we denote by GU the subgroup consisting of elements that are
the identity on X \ U (called the rigid stabilizer of U). We make the implicit assumption
that the groups GU are non-trivial for every non-empty open set: in this case say that G
is micro-supported (if this is not the case, the result below has trivial conclusion).

Various countable groups of interest arise as micro-supported groups of homeomor-
phisms (some examples will appear later in this text). Among other things, the class of
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micro-supported groups has been a vast source of examples of groups that are simple,
or more generally have few normal subgroups. The study of normal subgroups of such
groups often starts with an elementary observation: for every G ≤ Homeo(X), where X is
any Hausdorff space, every non-trivial normal subgroup of G must contain [GU , GU ], the
commutator subgroup of GU , for some non-empty open set U . This is sometimes called
the "double commutator lemma”, as its proof is a simple trick involving two commutators;
versions of this trick can be found e.g. in the proofs of old simplicity criteria of Higman
[Hig54], or Epstein [Eps70]. In particular in order to study normal subgroups of G one
is lead to understand the normal closures of the groups [GU , GU ]; this can be done under
additional assumptions on G and its action on X (typically versions of the so called frag-
mentation property, which require that the union of the groups GU for sufficiently many
open sets U generate a large subgroup of G).

Normal subgroups are (very special) examples of confined subgroups. It turns out that
the statement mentioned above holds true for confined subgroups as well:

Theorem 1.2.1 ( [3]). Let X be a Hausdorff space and G be a discrete group acting
faithfully by homeomorphisms on X. If H ≤ G is a confined subgroup of G (e.g. if H
belongs to a non-trivial URS of G), then there exists a non-empty open subset U ⊂ X such
that H contains [GU , GU ].

This results can be thought as a dichotomy for stabilisers of actions by homeomor-
phisms: if G ≤ Homeo(X) is as above, and if Gy Y is an action of G by homeomorphisms
on a compact space, then either some germ stabiliser Stab0

G(y) is trivial, or all of them
must be large enough and reminiscent of the action on X (each contains [GU , GU ] for some
non-empty open set U).

The first versions of this result were obtained in [1] and [2], (which provide a weaker
conclusion, or the same conclusion under stronger assumptions on the action of G on X);
finally we removed all unnecessary assumption in [3]. It is convenient to phrase Theorem
1.2.1 for groups of homeomorphisms to make its statement cleaner, but it should be stressed
that the role played by the topology onX is minor (given the little structure available): it is
essentially is a combinatorial result about group actions on sets. The proof is elementary in
nature, but substantially more involved than the simple trick mentioned above for normal
subgroups.

Theorem 1.2.1 has a direct application to C∗-simplicity, postponed to §1.3 below. Be-
yond this, using Theorem 1.2.1 as main tool, and exploiting further assumptions on the
action of G on X when available, we obtained a complete understanding of confined sub-
groups, or uniformly recurrent subgroups, of various classes of groups studied in the litter-
ature, that appear via a micro-supported action on some topological space. These results
provide restrictions on the possible actions of such groups on compact spaces. I discuss
below some sample results in this spirit, without being exhaustive.

1.2.2 A first example: Thompson’s groups

Famous examples of micro-supported groups are Thompson’s groups F ≤ T ≤ V . Thomp-
sons’ group F is the group of all piecewise linear homeomorphisms of the unit interval,
with finitely many discontinuity points for the derivative, all being dyadic rationals, and
which are piecewise of the form x 7→ 2nx + b for some n ∈ Z and b ∈ Z[1

2 ]. A similar
definition on the circle R/Z yields Thompson’s group T . Thompson’s group V is defined
as a group of homeomorphisms of the Cantor space of one-sided binary sequences {0, 1}N,
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which are locally given by homeomorphisms of the form vξ 7→ wξ for some finite binary
words v, w ∈ {0, 1}∗ and ξ ∈ {0, 1}N. The following result is proven in [1].

Theorem 1.2.2 ([1]). The following hold for the Thompson’s groups F ≤ T ≤ V .

1. The only non-trivial URSs of F are the singletons {N}, where N is a normal sub-
group (these are the trivial subgroup and the subgroups that contain the commutator
subgroup [F, F ]).

2. The only non-trivial URSs of the group T are {{1}}, {T} and the stabiliser URS
associated to its action on S1.

3. The only non only non-trivial URSs of the group V are {{1}}, {V } and the stabiliser
URS associated to its action on the Cantor set.

The last two items are a special case of a result from [1] which gives sufficient conditions
on a minimal group action G on compact space X, under which the URS associated to the
action is the only non-trivial URS of G (apart from {{1}} and {G}). That criterion applies
to other groups, including some variants of the Thompson’s groups, and as groups acting
on trees studied by A. Le Boudec in [LB16]. Prior to these results, there were essentially
no groups whose uniformly recurrent subgroups were completely understood, leaving apart
some rather degenerate cases (such as groups with only countably many subgroups). By
now there are many more examples.

The scarcity of URSs in a group provides constraints on its minimal actions on com-
pact spaces which are not topologically free. Indeed, from Theorem 1.2.2 and with some
additional work, we get the following. Recall that a group action by homeomorphisms on a
compact space Gy X factors onto another such action Gy Y if there exists a continuous,
surjective G-equivariant map p : X → Y .

Corollary 1.2.3. 1. Every minimal faithful action of the group F on a compact space
is topologically free.

2. A minimal action T y X of Thompson’s group T on a compact space which is not
topologically free must factor onto its natural action on the circle S1.

3. A minimal action of the group V on a compact space set which is not topologically
free must factor onto its natural action on the Cantor set.

1.2.3 Rigidity of actions and embeddings: the case of topological full
groups

Various interesting groups defined by a micro-supported action by homeomorphisms are
obtained starting from a much simpler group or pseudogroup of transformations, and then
considering transformations defined "piecewise" by those transformations. Thompson’s
groups above are an example of this principle. A general notion that systematizes this idea
is the one of topological full group.

Given a group G of homeomorphisms of a topological space X, its topological full group
is the group F (G) of all homeomorphisms h of X that locally coincide with elements of
G, namely such that for every x ∈ X there exists an open neighbourhood U of x and
g ∈ G such that h|U = g|U . Since this definition is local, it makes sense more generally
when G is a pseudogroup of homeomorphisms between opens subsets of X; this setting is
more convenient to develop the theory but I shall avoid introducing it here for simplicity.
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The notion of topological full group is mostly relevant when X is a Cantor space (i.e.
homeomorphic to the Cantor set), as we assume below. It was first studied when G is
the cyclic group generated by a single homeomorphism ϕ : X → X [GPS99,Mat06]. This
construction attracted increasing attention after the result of Juschenko and Monod that
the topological full group F (ϕ) is amenable for every minimal homeomorphism ϕ : X → X
of a Cantor space [JM13].

H. Matui showed that for various classes of minimal (pseudo-)groups G of homeo-
morphisms of the Cantor space, the commutator subgroup of F (G) is simple and finitely
generated [Mat06,Mat15]. For a general G, Nekrashevych defined a subgroup A(G) ≤ F (G)
called the alternating full group of the action [Nek19]. It can be defined as the subgroup of
F (G) generated by elements h that have order 3 and whose support can be partitioned into
3 disjoint clopen sets which are permuted cyclically by h (such elements are analogues of
3-cycles in the symmetric groups). In many cases, the group A(G) coincides with the com-
mutator subgroup of F (G); it is not known whether this is true for every minimal action
G y X. Nekrashevych showed that if G y X is minimal, then the group A(G) is simple
and contained in every non-trivial normal subgroup of F (G). In addition, if G is finitely
generated the action G y X is expansive, then the group A(G) is finitely generated. A
finitely generated group action on the Cantor space G y X is expansive if and only if it
is conjugate to a subshift, that is, a closed G-invariant subset of AG , where A is a finite
alphabet.

In [2] I obtain a classification of the confined subgroups of the groups F (G) and A(G),
which holds for any minimal group action G y X on the Cantor set: essentially, the only
confined subgroups are the stabilisers and germ stabilisers of finite collections of points
{x1, . . . , xr} ⊂ X (and subgroups nested between the two). Using that classification as
main tool, I obtained a rigidity result for actions of full groups a rigidity result for actions
on compact spaces which are nowhere topologically free. I shall state here only a simplified
version of that result. Given a space X, the configuration space of at most r points in X
is defined as the space of non-empty open subsets of X of cardinality at most r, and is
denoted X [r].

Theorem 1.2.4 (Rigidity of non-free actions of topological full groups [2]). Let G y X
be a minimal action on the Cantor set, and G be a group such that A(G) ≤ G ≤ F (G).
Assume that Gy Y is a faithful action on a compact space which is nowhere topologically
free. Then there exists a partition Y = Y0 t Y1 into disjoint G-invariant clopen subsets
such that:

• the action of A(G) on Y0 is trivial (and hence the action G y Y0 descends to an
action of the quotient G/A(G)).

• The action G y Y1 factors onto the action on a configuration space G y X [r] for
some r ≥ 1.

Remark 1.2.5. The actual main result in [2] has a stronger conclusion, which uses the
language of pseudo-groups (which is relevant in its statement even if one is interested only in
the special case of group actions). Roughly speaking, it says that any nowhere topologically
free action of the group A(G) is induced by a homomorphisms between pseudogroups in
a suitable sense; this formulation implies the existence of a factor map as above, but also
gives information on the fibers of the factor map, and relates well with various invariants of
pseudogroups (such as homology and geometric invariants), which are useful in applications
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[2]. This has led me to develop properly the study of a notion of morphisms between pseudo-
groups of homeomorphisms and the associated groupoids of germs, which was missing in
the litterature and occupies a large part of [2].

Note that contrary to Corollary 1.2.3, Theorem 1.2.4 applies to actions Gy Y that are
not necessarily minimal. One advantage of a result holding for all topologically nowhere
free actions of a group G (without any minimality assumption), is that such a result implies
restrictions on the possible embeddings of G into other groups defined via an action by
homeomorphisms. Indeed if H ≤ Homeo(Y ) is a group acting on a compact space, there is
no reason that a group embedding G ↪→ H should give rise to a minimal action (its minimal
sets could be just fixed points). However, the properties of the action H y Y might suffice
to enforce that all embeddings ϕ : G ↪→ H induce an action which is nowhere topologically
free. One way to ensure this is to analyse the geometry of the graph of germs of the action of
the target group H y Y , which are defined as the Schreier graphs associated to the germ-
stabilisers Stab0

H(y). It is enough for this to show that there is “no room” in these graphs to
contain copies of G embedded in a Lipschitz way (which would be the case if the G-action
is somewhere topologically free). A large-scale invariant which is adapted to this purpose
is asymptotic dimension, introduced by Gromov [Gro93a]. In the setting of topological full
groups, this is particularly natural because the groups A(G) or F (G) always have infinite
asymptotic dimension, but their graph of germs are quasi-isometric to those of the original
action G y X, and in many interesting examples their asymptotic dimension is finite.
Thus Theorem 1.2.4 has the following corollary which allows to understand embeddings
between the topological full groups of a vast class of group actions.

Corollary 1.2.6 (Rigidity of embeddings between topological full groups [2]). Let G y X
be a minimal action on a Cantor space of a finitely generated group, and G be a group such
that A(G) ≤ G ≤ F (G). Let Hy Y be an action of a finitely generated group on a compact
space, whose graphs of germs have finite asymptotic dimension (for instance, if the action
is topologically free and the group H has finite asymptotic dimension).

Then for any group embedding G ↪→ F (H), the induced action of G on Y satisfies the
conclusion of Theorem 1.2.4.

Previously it had long been known that if G y X,H y Y are minimal group actions
on the Cantor set, then for every group isomorphism ϕ : F (G) → F (H), there exists a
homeomorphism q : X → Y that ϕ(g) = qgq−1 for every g ∈ G. This result follows from
a more general result of M. Rubin [Rub89] (it was rediscovered in this setting by Matui
[Mat15]); it is an example of a so called “reconstruction result" for groups of homeomor-
phisms. Such results give conditions on a group action by homeomorphism Gy X under
which the space X and the action can be abstractly reconstructed from X. Early examples
of reconstructions results were proven for the groups Homeo(M) and Diff(M) of homeo-
morphisms and diffeomorphisms of manifolds (Whittaker [Whi63], Filipkiewicz [Fil82]). M.
Rubin [Rub89,Rub96] later provided a vast array of such results applicable to very general
micro-supported group of homeomorphism G ≤ Homeo(X) satisfying some mild additional
condition (tipically expressed in terms of the action of the groups GU on U). Rubin was
mostly motivated by the group of all homeomorphisms of suitable spaces, but his results
are also applicable to countable subgroups and have been widely used (or rediscovered
in special cases) to distinguish such groups up to isomorphisms. A well-known limit of
those classical reconstruction methods is that they can’t be applied to study embeddings
between groups; this is because the conditions on the action necessary to apply them are
too strong and need not be satisfied by the image of an arbitrary embedding. This very
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general problem was raised by Rubin, who asked (with a carefully vague formulation): “are
any reasonable assumptions under which an embedding of the group of homeomorphisms
of a space X into another group of homeomorphism of a space Y implies that X is some
kind of continuous image of Y ?” [Rub89]. Corollary 1.2.6 provides a satisfactory answer
in the setting of topological full groups. Other results in this spirit have been proven
for homeomorphisms and diffeomorphisms groups of manifolds, for which the problem of
studying embeddings was independently raised by É. Ghys and and has been studied by
various authors (see e.g. Hurtado [Hur15], Chen and Mann [CM23]). That setting is quite
different, as those groups admit a natural Polish topology which is crucial to the argu-
ments, while Corollary 1.2.6 deals with countable groups. Nevertheless, there is a striking
formal analogy between Theorem 1.2.4 and the results of L. Chen and K. Mann [CM23].

I shall conclude this part by illustrating Corollary 1.2.6 in a couple of concrete special
cases. First consider the case of topological full group F (ϕ) of a Z action, generated by
a homeomorphism ϕ : X → X. It is not difficult to see that if ψ : Y → Y is another
homeomorphism that factors onto (X,ϕ), then there is a natural embedding of the group
F (ϕ) into F (ψ). In addition for every ψ0 ∈ F (ψ) the group F (ψ0) is naturally a subgroup
of F (ψ). Using Corollary 1.2.6, one can show that all embeddings between the groups F (ϕ)
arise from these two observations:

Theorem 1.2.7 ([2]). Let (X,ϕ), (Y, ψ) be homeomorphisms of Cantor spaces, with (X,ϕ)
minimal. Then there exists an embedding of the group F (ϕ) into F (ψ) if and only if there
exists some element ψ0 ∈ F (Y, ψ) supported on some clopen subset Y0 ⊂ Y and such that
(Y0, ψ0) factors onto (X,ϕ).

One of my personal motivations to prove Theorem 1.2.4 was the fact that the subgroups
structure of topological full groups is largely mysterious. In other words we know very little
about how the dynamical properties of an action G y X limit the possible subgroups of
its topological full group. From this perspective it is natural to ask when they can embed
into each other. Corollary 1.2.6 allows to show that many natural dynamical invariants
of actions provide obstructions to such embeddings, confirming in some situations the
natural intuition that “simpler” group actions have “smaller” topological full group. A
basic example is the following consequence of Theorem 1.2.7, where htop denotes topological
entropy.

Corollary 1.2.8. Let (X,ϕ), (Y, ψ) be a homeomorphism of the Cantor set, and assume
that htop(X,ϕ) > 0 and htop(Y, ψ) = 0. Then the group F (ϕ) does not admit any embedding
into F (ψ).

Remark 1.2.9. The numerical value of entropy is not an obstruction to group embeddings,
as can be seen by the fact that htop(ϕ2) = 2htop(ϕ) and F (ϕ2) ≤ F (ϕ).

As another example, let us consider subgroups of the group IET of interval exchange
transformations. The group IET is the group of all piecewise continuous bijection of the
circle R/Z, with finitely many discontinuities, which in restriction to each interval of conti-
nuity coincide with a translation x 7→ x+α. Given a finitely generated subgroup Λ ≤ R/Z,
denote by IET(Λ) the subgroup of IET consisting of all elements whose discontinuity points
belong to Λ and that are piecewise of the form x 7→ x+ λ with λ ∈ Λ. The group IET(Λ)
is finitely generated. As observed in [Cor14] the group IET(Λ) can be identified with the
topological full group of a minimal action of the finitely generated abelian group Λ on the
Cantor set, obtained from its action by translations on the circle R/Z by “blowing up”
the orbit of 0 as in the classical Denjoy counterexample [Cor14]. The subgroup structure
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of the group IET is quite mysterious. Since every finitely generated subgroup of IET is
contained in IET(Λ) for some finitely generated Λ ≤ R/Z, it is natural to ask how the
possible subgroups of IET(Λ) depend on the nature of Λ. There are very few results in
this direction. The following result, also based on Corollary 1.2.6, goes in this direction by
classifying when the groups IET(Λ) embed into each other.

Theorem 1.2.10 ([2]). Let Λ,∆ ≤ R/Z be subgroups, and denote Λ̃, ∆̃ ≤ R their preim-
ages. Then the following are equivalent

(i) exists an (abstract) group embedding of IET(Λ) ↪→ IET(∆);

(ii) there exists some 0 < α ≤ 1 such that the affine map x 7→ αx sends Λ̃ inside ∆̃.

In [3], we prove also several results in a similar spirit within the class of (weakly) branch
groups acting on rooted trees, which I shall not discuss here.

1.3 Furstenberg boundary and C∗-simplicity
In topological dynamics, a boundary action of a group G is a continuous action by home-
omorphisms on a compact space X which is minimal and strongly proximal, that is, every
probability measure on X can be accumulated by G on some Dirac mass (the space X
is also called a G-boundary). Every group has a universal boundary G y ∂FG, called
the Furstenberg boundary, which factors onto every boundary of G.2 For a discrete non-
amenable group G, the space ∂FG is never metrisable, and is highly non-explicit.

Boundary actions and their stabilisers have turned out to be intimately connected to
the study of unitary representations and the associated C∗-algebras. Recall that a group G
is C∗-simple if its reduced C∗-algebra (namely the C∗-algebra generated by the left-regular
representationGy `2(G)) is simple; equivalently if every unitary representation ofG which
is weakly contained in the left-regular representation is weakly equivalent to it. There has
been an extensive literature on the problem of determining which groups have this property.
A series of breakthrough papers of by Kalantar and Kennedy [KK17], Breuillard, Kalantar,
Kennedy, Ozawa [BKKO17] and Kennedy [Ken15] lead to the following characterisation.

Theorem 1.3.1 ([KK17,BKKO17,Ken15]). For a discrete group G, the following condi-
tions are equivalent.

(i) The G-action on ∂FG is free.

(ii) There is a G-boundary on which the G-action is topologically free.

(iii) The group G does not have any non-trivial URS consisting of amenable subgroups.

(iv) G does not have any amenable confined subgroup.

(v) The group G is C∗-simple.

The combination of Theorem 1.2.1 with Theorem 1.3.1 yields imediatly the following.

Corollary 1.3.2 (of Theorems 1.2.1 and 1.3.1, [1]). Let G be a discrete group acting
faithfully by homeomorphisms on a Hausdorff space. Assume that for every non-empty
open set U ⊂ X, the group GU is non-amenable. Then G has no non-trivial amenable
confined subgroup. In particular G is C∗-simple.

2The space ∂FG should not be confused with the Poisson–Furstenberg boundary, which is a measure
space associated to the choice of a random walk on G
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This criterion is suitably applied to various classes of groups of homeomorphisms, as
described in [1]. For example it implies that Thompson’s group V is C∗-simple, and
also applies to various generalisations of it appearing in the litterature. More examples
to which Corollary 1.3.2 applies arise as subgroups of the groups of piecewise projective
homeomorphisms of the real line studied by Monod [Mon13], which are non-amenable and
have no free subgroups, non-amenable branch groups acting on rooted trees, the topological
full group of any topologically free action G y X of a non-amenable group.

Haagerup and Olesen discovered a connection between the C∗-simplicity problem for
the Thompsons’ groups F < T and the long-stading question whether Thompsons’ group
F is amenable: if the group T is C∗-simple, then the group F is non-amenable [HO17].
From Corollary 1.3.2, it follows that the non-amenability of F is actually equivalent to the
C∗-simplicity of T , as well as to the C∗-simplicity of F itself.

In the more recent work with P.-E. Caprace and A. Le Boudec [4], we provide a con-
dition for the freeness of the action on the Furstenberg boundary for a class of locally
compact, non-discrete groups. (Note that Theorem 1.2.1 is not true in this setting). Fol-
lowing Caprace and Monod, a subgroup H of a locally compact group G is called relatively
amenable if every continuous G-action on a compact space has an H-invariant probability
measure; for discrete groups this condition is equivalent to the amenability of H, but for
general locally compact groups this is not known [CM14]. For a locally compact groupG the
equivalence between (i)–(iv) in Theorem 1.3.1 remains intact upon replacing “amenable”
with “relatively amenable" (all implications are elementary except (ii)⇒(iii), which follows
from recent work of A. Le Boudec and T. Tsankov [LBT23]). The equivalence of these
conditions with the C∗-simplicity (v) is still an open problem.

While for non-amenable discrete groups the property to act freely on the Furstenberg
boundary is quite common, for non-discrete groups the situation is very different. Indeed
many natural non-discrete groups admit amenable confined subgroups: this is the case
in particular for all connected Lie groups (which admit cocompact amenable subgroups).
As a consequence of this and of [BM02, Theorem 3.3.3] any locally compact group acting
freely on its Furstenberg boundary must be totally disconnected. Even in this case, many
natural examples fail to have this property, for instance semi-simple algebraic groups over
local fields, or the group Aut(T ) of automorphisms of a tree. We show the following.

Theorem 1.3.3 ([4]). Let G be a totally disconnected locally compact group. Suppose that
G admits a faithful action on a compact totally disconnected space X such that for every
non-empty clopen subset U ⊂ X, the action of GU on U is minimal and strongly proximal.
Then G does not have any relatively amenable confined subgroup; equivalently, G acts freely
on its Furstenberg boundary.

Examples of groups to which this result applies are the Neretin groups Nd. The group
Nd can be defined as the topological full group of the action of the group of automorphism
Aut(Td) of a d-regular rooted tree on its boundary ∂Td. It is endowed with a locally
compact topology defined by the condition that the inclusion of Aut(Td) is continuous and
open.

Corollary 1.3.4. for every d ≥ 3, the Neretin group Nd acts freely on its Furstenberg
boundary.

Part of the recent research on totally disconnected locally compact groups is focused
on the class of compactly generated, non-discrete simple groups (see e.g. the ICM address
by P.E. Caprace and G. Willis [CW22]). A guiding paradigm is to understand analogies
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and differences with the classical cases of Lie groups and simple algebraic groups over local
fields. To our knowledge, the groups Nd provide the first examples of groups in this class
which act freely on their Furstenberg boundary.

It is an open question to find a complete characterisation of the confined subgroups (or
of the uniformly recurrent subgroups) of the groups Nd.

1.4 Growth gaps for group actions
In this section we discuss a different type of application of the study of the conjugation
action G y Sub(G), namely to the geometry of the graphs of faithful actions of a group
G. Some first results in this direction appear in [2,3], and this topic is the primary object
of [5].

1.4.1 Framework and context

Let G be a finitely generated group endowed with a symmetric, finite generating set S.
Assume that G acts on a set X (just called a G-set for short). We say that a G-set is
faithful if the action of G on it is faithful. Given a G-set, the graph of the action (or
Schreier graph) is the graph Γ(G,X) with vertex set X and where any two points are
connected by an edge if one is the image of the other under some generator s ∈ S. We
drop S from the notation as we are interested in the large scale geometric properties of
this graph, which do not depend on S (up to bi-Lipschitz equivalence). We do not require
here that the action is transitive, so that the graph Γ(G,X) need not be connected: its
connected components are precisely the G-orbits in X.

Graph of actions are much more flexible than Cayley graphs, and there are not many
general results that relate directly the properties of a group G with the properties of
the graphs of the possible faithful actions of G. The importance to study this general
question has gradually emerged in recent years, motivated in part from the developments
in the study of various groups of dynamical origin arising via natural actions with very
explicit graphs, which turn out to be a fundamental tool to study them (see for example
[BG02,JM13,Nek18].)

Our main focus here is on the volume growth of balls. Denote by BΓ(G,X)(x, n) the
ball of radius n around a point x, and by BG(n) the ball of radius n in G. We define the
growth of the action of G on X is the function volG,X(n) measuring the size of the largest
ball, namely

volG,X(n) := max
x∈X
|BΓ(G,X)(x, n)| = max

x∈X
|BG(n) · x|.

Given functions f, g : N → N, we write f(n) � g(n) if there exists C > 0 such that
f(n) ≤ Cg(Cn) for every n ≥ 1, and f(n) ' g(n) if f(n) � g(n) � f(n). Then volG,X(n)
does not depend on the choice of generating set up to the equivalence '.

It should be noted that the function volG,X(n) can be unbounded also if all individual
G-orbits are finite (so that Γ(G,X) is a disjoint union of finite graphs), and this situation
is included in our setting.

For the action of G on itself, this invariant coincides with the usual word growth of G,
denoted volG(n) := |BG(n)|. It is clear that the growth of every G-set is bounded above
by the growth of G, but can be much smaller. In fact many finitely generated groups
admit faithful G-sets X whose growth is linear, i.e. volG,X(n) ' n (this is the smallest
possible growth for a faithful action of an infinite group); for instance it is not difficult to
construct such actions for finitely generated free groups. More generally, all right-angled
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Artin groups (RAAGs) admit such actions, as observed by Salo [Sal21]; as a consequence
many groups that are known to embed into RAAGs also do (including surface groups
and many hyperbolic groups). More examples include Grigorchuk groups, see [BG02],
topological full groups of Z-actions, etc.

Conversely it is natural to wonder what are obstructions, in terms of G, to admit actions
of small growth. To formalise this question we state the following definition.

Definition 1.4.1. Let G be a finitely generated group, and f : N→ N a function. We say
that G has Schreier growth gap f(n) if for every faithful G-set X we have volG,X(n) < f(n).
The gap is said to be non-trivial if f is not asymptotically linear, i.e. lim sup f(n)/n =∞.

Some familiar group properties imply the existence of a Schreier growth gap. For
instance it is well known that a group with Kazhdan’s property (T) has a Schreier growth
gap exp(n) (for transitive actions, this observation is pointed out by Gromov in [Gro93b],
where it is attributed to Kazhdan; for general actions see [JdlS15]). As another example,
it is not too difficult to see that if a group G contains a cyclically distorted element, then
it satisfies a non-trivial Schreier growth gap (which can be estimated from quantitative
control on the distorsion). It is natural to seek for more instances of this phenomenon.

It should also be observed that the knowledge of a Schreier growth gap for a class of
groups C can be used to rule out that other groups G admit subgroups in C, in view of the
fact that if X is a G-set, the action of every finitely generated subgroup H of G satisfies
volH,X(n) 4 volG,X(n). This approach is natural in the setting of topological full groups
and other groups of dynamical origin, whose subgroup structure is quite mysterious. This
was part of the context that lead us to identify this notion, making it natural to study it
in its own right.

1.4.2 Some gaps arising from classification of confined subgroups

There is a direct connection between growth function volG,X(n) of G-sets and confinement
of subgroups. Indeed suppose that a G-set X, the collection of stabilisers {Stabx(G) : x ∈
X} accumulates on the trivial subgroup {1}. Then the graph Γ(G,X) will contain ar-
bitrarily large balls isomorphic to balls in the Cayley graphs of G, and it follows that
volG,X(n) ' volG(n). In particular the inequality volG,X(n) � volG(n) can only be strict
if all stabilisers Stabx(G) are (uniformly) confined.

This observation can be used to establish Schreier growth gaps when one has a complete
classification of the confined subgroups of a group G (sometimes a classification of URSs
suffices). This is the case for various groups given by an action by homoemomorphisms
thanks to the results discussed in §1.2. For example, as an application of the classification
of confined subgroups of topological full groups in [2], I showed the following.

Theorem 1.4.2 ([2]). Let G y X be an expansive, minimal action by homeomorphisms
of a finitely generated group G on a Cantor space, and A(G) be the alternating full group
of the action (recall that it is finitely generated by Nekrashevych [Nek19]). Then A(G) has
a Schreier growth gap volG,X(n).

It is not difficult to see that the natural action of A(G) on X has the same growth as
the original action of G, so that this result is sharp. Thus Theorem 1.4.2 can be seen as a
source of examples of groups satisfying a sharp Schreier growth gap f(n) for a vast class of
functions (indeed the growth function of a minimal expansive group action on the Cantor
set can have a wide range of behaviours, although a complete characterisation seems to be
missing from the literature).
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In [3], we show a similar phenomenon for branch groups. Recall that a profinite action
of a group G is an action on a Cantor space X which is an inverse limit of finite actions.
This is equivalent to the fact that X can be identified with the boundary ∂T of a locally
finite rooted tree, on which T acts by isometries. Following Grigorchuk [Gri00], a branch
group is a group G ≤ Homeo(X) given by a faithful minimal profinite action on a Cantor
space, with the property that for every open cover U1, · · · , Uk of X, the subgroup of G
generated by the rigid stabilisers GU1 , . . . , GUk has finite index in G. The class of branch
groups includes many well-studied examples of groups acting on rooted trees, including
the Grigorchuk groups [Gri84]. This setting a source of group actions whose graphs can
have a variety of possible growths and geometric properties. In [3] we provide a structure
theorem on confined subgroups and URSs for (weakly) branch groups. As an application
we show the following

Theorem 1.4.3 ([3]). Let G ≤ Homeo(X) be a finitely generated branch group. Then G
has a Schreier growth gap volG,X(n).

1.4.3 Non-foldable subsets

The two results in the previous subsection rely on a precise characterisation of the confined
subgroups or URS of the groups under consideration. Although this method to establish
Schreier growth gaps is viable in some cases, it has rather limited scope, indeed most infinite
groups admit a wild pool of confined subgroups, which are too many to be classified (even
classifying normal subgroups is often hopeless).

Here I explain a method to study Schreier growth gaps which requires only a partial
understanding of confined subgroups. This method comes from [5], were we used it to
study Schreier growth gaps in the setting of finitely generated solvable groups (the main
results in that setting will be explained in §1.4.4). It is based on the following notion,
which has some independent interest.

Definition 1.4.4. Let G be a group. A subset L ⊂ G is non-foldable if for every faithful
G-set X and every finte subset Σ ⊂ L, there exists a point x ∈ X such that the orbital
map g 7→ gx is injective on Σ.

In other words if a subset L of a group is non-foldable, then for every fatifhful G-set,
every finite subset of L appears “embedded” in the graph Γ(G,X) through a Lipschitz
map (with respect to the distance on L induced by G). In terms of growth this implies
that G must satisfy a Schreier growth gap at least equal to the relative growth of L in G.
However the data of a non-foldable subset provides more explicit geometric information
on the graphs of faithful actions of G; for instance it also provides lower bounds on their
asymptotic dimension.

The fact that a given subset of L of a group G is non-foldable has an elementary
reformulation in terms of a suitable family of confined subgroups of G. To explain this
connection, recall that a subgroup H of G is confined if and only if there exists a finite
subset P ⊂ G\{1} which intersects non-trivally every conjugate of H, we call P a confining
set for H. For a finite set P , denote by SG(P ) the collection of confined subgroups of G
for which P is a confining set P . The set SG(P ) is a closed G-invariant subset of Sub(G)
avoiding {1}.

Lemma 1.4.5 (Non-foldable subsets and confined subgroups). Let G be a group and L be
a subset of G. The following are equivalent:
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(i) L is a non-foldable subset of G;

(ii) for every finite subset Σ ⊂ L we have⋂
H∈SG(P )

H 6= {1},

where P = {g−1h : g, h ∈ Σ, g 6= h}.

The intersection in the statement is a normal subgroup, its non-triviality means that
all confined subgroups in SG(P ) must be induced from some proper quotient of G.

In practice, Lemma 1.4.5 is used by first guessing an explicit subset L ⊂ G that one
hopes to be confined, and then proving so by verifying condition (ii) is satisfied. A good
guess of the set L is essential, as it narrows down the set of confined subgroups of G that
one needs to study. (A trivial, but perhaps helpful example is when L is an infinite cyclic
subgroup, which is always non-foldable).

1.4.4 Growth gaps for actions of solvable groups

The main results form [5] establish Schreier growth gaps for some classes of finitely gen-
erated solvable groups. One motivation to look at this setting is that the nature of the
problem suggests to look at rather “small” groups first. In fact solvable groups also played
a role in the early developments of the theory of growth of groups. Recall that Wolf [Wol68]
and Milnor [Mil68] proved if G is a finitely generated solvable groups, then the growth of
G is either polynomial or exponential, and the first case arises exactly when G is virtually
nilpotent. Moreover virtually nilpotent groups satisfy volG(n) ' nd for some d ∈ N given
by the Bass – Guivarch formula [Bas72,Gui73].

Another motivation is that the class of solvable groups does contain some very explicit
examples of actions of small growth, which serve as test case for our study. For example,
consider the wreath product G = A o B of two finitely generated abelian groups, namely
the semi-direct product A(B) oB, where A(B) is the set of functions f : B → A with finite
support, on which B acts by translation. The group G admits a natural action on the set
X = B ×A, given by the formula

(f, b) · (b1, a1) = (bb1, f(bb1)a) (f, b) ∈ A(B) oB, (b1, a1) ∈ B ×A.

This action is transitive and faithful, and its Schreier graph is quasi-isometric to the graph
obtained by taking a copy of the Cayley graph of A, and gluing at each vertex a copy of
the Cayley graph of B (see Figure 1.1). In particular volG,X(n) ' volA(n)×volB(n), which
is polynomial. For example, if G = Cp o Zd we have volG,X ' nd , and if G = Z o Zd we
have volG,X(n) ' nd+1. Similar constructions cam be made for other metabelian groups,
for instance by embedding them into (unrestricted) wreath product using versions of the
Magnus embedding. This way one can show, for instance, that the free metabelian group
FMd on d generators has a faithful action of growth nd+1.

Finally we mention that solvable groups are generally quite different from the examples
considered in §1.4.2 in regard of the fact that they tipically have a more complicated
structure of confined (or even normal) subgroups.

Before stating the main results in [5], we shall point out the elementary fact that if G is
a finitely generated group which is virtually abelian, then G always admits a faithful G-set
X with volG,X(n) ' n. Thus such groups are excluded when studying Schreier growth gap.
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Figure 1.1: Schreier graph of the standard wreath product action of Z o Z: the “comb”.

It is natural to address first the case of polycyclic groups (which include in particular all
virtually nilpotent groups). This class is somewhat degenerate for the problem considered
here, due to the fact that a polycyclic group has only countably many subgroups, which
implies its URSs are all finite (i.e. consist of subgroups which are normalised by some
finite index subgroup of G). Thanks to this, an elementary compactness argument in the
space Sub(G) shows that the study of growth of actions of polycyclic groups reduces to the
classical results on growth of such groups:

Proposition 1.4.6. Let G be a polycyclic group.

1. If G is virtually nilpotent, then for every faithful G-set there exists d ∈ N such that
volG,X(n) ' nd.

2. If G is virtually nilpotent, then G has a sharp Schreier growth gap nαG, where αG
can be computed explicitly and αG ≥ 4 unless G is virtually abelian.

3. If G is not virtually nilpotent, then G has a Schreier growth gap exp(n).

The situation is quite different when we consider more general solvable groups, which
might have a much richer subgroup structure. The first case to look at is metabelian
groups. Even in this class, there are groups of exponential growth which admit faifthul
actions of linear growth. An example of such a group is the lamplighter group C2 o Z,
whose natural wreath product action (described above) has linear growth. Actually, the
group C2 oZ admits faithful actions whose growth is equivalent to an arbitrarily prescribed
function f(n) between linear and exponential and satisfying some mild conditions, see
[5, Proposition 2.3]. So unlike for polycyclic groups, strictly nothing can be said on the
possible growth of actions for all metabelian groups. Nevertheless the lamplighter group
can be considered a somewhat degenerate example, for instance it is not finitely presented,
and contains a very large subgroup consisting of torsion elements. The first main result in
[5] says that a uniform Schreier growth gap does hold for two natural classes of metabelian
groups:

Theorem 1.4.7. Let G be a finitely generated metabelian group which is not virtually
abelian. Assume that G satisfies any of the following conditions:

• G is finitely presented,

• G is is torsion-free.
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Then G has a Schreier growth gap n2. If moreover both conditions hold, then G has a
Schreier growth gap n3.

This result is sharp, in the sense that there are examples of metabelian groups admitting
faithful actions of quadratic growth, both in the finitely presented and in the torsion-free
case.

After such a uniform bound for a whole class of groups is established, the next natural
question is to seek for quantitative criteria that depend on finer invariants of the group G.
A natural invariant associated to a metabelian group is its Krull dimension. This is a well-
known invariants of rings, whose relevance in the setting of metabelian groups was pointed
out by Cornulier [Cor11] and further exploited by Jacoboni [Jac19], who showed that it
provides bounds on the return probability of the random walk. We show the following.
Theorem 1.4.8. Let G be a finitely generated metabelian group which is not virtually
abelian and has Krull dimension d. Then G has a Schreier growth gap nd.

A relevant special case of application of Theorem 1.4.8 is given by the wreath products
(Z/pZ)oZd and ZoZd, whose Krull dimension is d and d+1 respectively. For these groups the
Schreier growth gap established by Theorem 1.4.8 is sharp, as it is matched by the standard
wreath product action mentioned above. Another case in which the theorem is sharp is
the free metabelian group FMd on d generators, whose Krull dimension is d + 1. Both
Theorems 1.4.7 and 1.4.8 are based on a criterion that allows to find explicit non-foldable
subsets in metabelian groups. For example, in the case of wreath products G = Cp oZ and
Z o Zd, that criterion allows to construct a non-foldable subset L which is quasi-isometric
to the graph of their standard wreath product action. That is, that graph is the “smallest”
in the sense that all graphs of faithful actions of such groups must contain large balls of it.

For arbitrary solvable groups of higher solvability length the situation appears to be
much more complicated in full generality. Nevertheless the following result provides a class
of solvable groups which satisfy the strongest possible Schreier growth gap. Recall that
a slovable group G has finite Prüfer rank if there exists k > 0 such that every finitely
generated subgroup of G can be generated by at most k elements. This class contains all
solvable groups which are linear over the field Q (but also examples that are not linear
over any field).
Theorem 1.4.9. Let G be a finitely generated solvable group of finite Prüfer rank. If G is
not virtually nilpotent, then it has a Schreier growth gap exp(n).

Polycyclic groups have finite Prüfer rank. Thus this result is a generalisation of the
third item in Proposition 1.4.6. However the class of solvable groups with finite Prüfer
rank is quite larger (in particular such groups can admit an uncountable set of subgroups),
and the proof of Theorem 1.4.9 requires substantially more involved arguments compared
to the polycyclic case, based on Malcev’s theory. Theorem 1.4.9 is based on a criterion
that allows to find explicit non-foldable subsets in groups that admit a nilpotent normal
subgroup N EG of finite Prüfer rank, provided the conjugation action of G on N satisfies
a certain irreducibility condition [5, Theorem 4.9]. Theorem 1.4.9 cannot be extended even
to solvable groups which are linear over fields more general than Q: for example if K is any
extension of Q containing a transcendental element, then there there are solvable groups
which are linear over K which are not virtually nilpotent, but admit faithful actions of
polynomial growth (for instance Z o Z).

Another problem discussed in [5] is whether the Schreier growth gap n2 for torsion-free
metabelian groups from Theorem 1.4.7 extends to torsion-free solvable groups of arbitrary
length. We conjecture an affirmative answer
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Conjecture 1.4.10. Let G be a finitely generated solvable group which is virtually torsion-
free and not virtually abelian. Then G has a Schreier growth gap n2.

We provide various partial answers of the conjecture which cover many familiar classes
of torsion-free solvable groups (including e.g. all linear ones), but could not solve the
conjecture in general.

1.5 Highly transitive actions and confined subgroups
We conclude this chapter by explaining yet another application of confined subgroups, to
the study of highly transitive actions. An action of a group G on an infinite set set Ω is
highly transitive if the induced action on the set of ordered ntuples of distinct points is
transitive for every n. Equivalently, an action is highly transitive if the induced homomor-
phism from G to the group Sym(Ω) of all permutations of Ω has dense image, where Sym(Ω)
is endowed with the pointwise convergence topology. An example of a highly transitive
action is for instance given by the action of the group Symf (Ω) of finitary permutations of
Ω, or even its subgroup Altf (Ω) of alternating permutations. Here a permutation is termed
finitary if it moves only finitely many points. Recall that Altf (Ω) and Symf (Ω) are normal
subgroups of Sym(Ω), and every non-trivial normal subgroup of Sym(Ω) contains Altf (Ω)
[Ono29, SU33]. For a group G acting faithfully and highly transitively on Ω, one easily
verifies that the image of G in Sym(Ω) contains a non-trivial finitary permutation if and
only if it contains Altf (Ω). If a group G admits an action with this property, we say that
G is partially finitary. This can be reformulated as an intrinsic property of the group,
namely G is partially finitary if and only if it has a normal subgroup N isomorphic to
Altf (Ω), with trivial centraliser in G [6, §2.3]. This is a somewhat trivial class of examples,
and we are mostly interested in highly transitive actions of groups that are not partially
finitary.

In [6] we establish the following connection between confined subgroup and highly
transitive actions.

Theorem 1.5.1. Suppose that a group G admits a faithful and highly transitive action on
Ω and that G is not partially finitary. If H is a confined subgroup H of G, then the union
ΩH,f of finite H-orbits is a finite subset of Ω, and the action of H on ΩH,∞ := Ω \ΩH,f is
highly transitive.

Theorem 1.5.1 is an application of a characterisation of the confined subgroups of
Sym(Ω) (with respect to the discrete topology on Sym(Ω)), that we provide in [6, Theorem
3.7]. That result relies on the proof mechanism of Theorem 1.2.1 from [3]. Theorem 1.5.1
is then deduced using by exploiting the fact that if H is a confined subgroup of G, then the
closure of H under a dense embedding G ↪→ Sym(Ω) (with respect to the Polish topology
on Sym(Ω) ) is confined in the whole group Sym(Ω) (with respect to its discrete topology!).

Recently there has been a growing interest for a better understanding of which (say
countable) groups admit faithful highly transitive actions. Actually the question is al-
ready rich for primitive actions, and was investigated in depth by Gelander and Glasner
[GG08], partly motivated by earlier results of Margulis and Soifer [MS81]. See [GGS22] for
a recent survey. A series of consecutive works shows that various groups admitting a rich
geometric or dynamical action also admit a highly transitive action. This is for instance
the case for free groups [McD77,Dix90,Ols15,EG16,LM18], surface groups [Kit12], hyper-
bolic groups [Cha12], outer automorphism groups of free groups [GG13a], acylindrically
hyperbolic groups [HO16], unbounded Zariski dense subgroups of SL2 over a local field
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[GGS22], and many groups acting on trees [FLMMS22]. More examples arise as groups of
homeomorphisms. For example, the action of the Higman-Thompson’s group Vd on each
of its orbits in the Cantor set is highly transitive on each orbit. More generally, for every
group action G y X on the Cantor set, the action of the topological full group F (G) (or
even the alternating full group A(G)) on each infinite orbit is highly transitive (these were
defined in §1.2.3).

While there is by now an abundant litterature establishing the existence of highly
transitive actions for various classes of groups, there are relatively few general obstructions
that prevent a group from having such actions, mostly of algebraic nature (see [6, §2.4]
for a more detailed discussion around this). The following consequence of Theorem 1.5.1
provides a new criterion to rule out the existence of highly transitive actions.

Corollary 1.5.2. Let G be a group that is not partially finitary, and let H be a confined
subgroup of G. If H does not admit any faithful highly transitive action, then neither does
G.

As an example of application of this criterion, we provide a family of groups that do not
admit any faithful highly transitive action, without satisfying any of the main previously
known obstructions to this property. These groups belong to the family of groups acting
on suspension flows of subshifts from [7], that will be extensively discussed in §2.4 (for a
different purpose).

Beyond the problem of deciding which groups admit highly transitive actions, it is
natural to try to classify all highly transitive actions of a given group. In the case of
primitive actions, similar questions have been considered by Gelander–Glasner in [GG08,
GG13b] for countable linear groups. It follows from an old result of Jordan-Wielandt
that the group Altf (Ω) admits a unique highly transitive action up to conjugacy, and more
generally the same is true for every partially finitary group (as we observe in [6, Proposition
2.4]). Apart from this observation, there was before [6] no example of a finitely generated
highly transitive group whose highly transitive actions were completely understood. Using
Theorem 1.5.1 as main tool we obtain an example of such a classification result, for the
family of the Higman–Thompson’s group Vd acting on the Cantor set:

Theorem 1.5.3 ([6]). Every faithful highly transitive action of the Higman–Thompson
group Vd is conjugate to its natural action on some orbit in the Cantor set.

The proof of Theorem 1.5.3 can be adapted to other groups acting on compact spaces
with suitable dynamical properties. It is a natural question whether the same result holds
true for the topological full group of every minimal group action on the Cantor set.
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Chapter 2

Group actions on the real line

2.1 Introduction
This chapter presents the papers [7,8,9,10], in collaboration with J. Brum, C. Rivas and M.
Triestino. The general context of these results is the study of dynamics of groups actions
by orientation pereserving homeomorphisms, or diffeomorphisms, on connected manifolds
of dimension 1 (that is, the circle and real intervals, possibly with boundary points). The
study of actions of the group of integers Z on the circle is a classical topic in dynamics
going back to the fundamental work of Poincaré and Denjoy. The study of one-dimensional
actions of more general groups has its origin in the study of co-dimension one foliations
and independently in the theory of (left-)orderable groups. This gave rise to a theory that
considerably expanded in the last decades, after the results of Ghys, Matsumoto, Witte
Morris, Margulis, Navas, and many others.

In a nutshell, one of the main goals in the field is to be able to address the following
questions for some groups G of interest:

1. to determine whether G can act (non-trivially or faithfully) on a one-manifold;

2. if this is the case, to describe its possible actions.

In the study of these questions, the regularity of the action plays a crucial role. Namely
one can consider actions by homeomorphisms or by diffeomorphisms of a given class Cr. In
regularity Cr with r > 1, several restrictions on actions by diffeomorphisms are based on the
possibility of controlling the affine distorsion (namely how much the ratio between length of
intervals is modified): a prototipical example is Denjoy’s theorem for circle diffeomorphisms
of class C2. Our main focus will be on actions in very low regularity, namely C0 and C1.

In regularity C0 it is enough to consider the circle and the real line (boundary points
of intervals play a role only when derivability at them is assumed). Question 2 is better
understood in the case of the circle, at least for actions without finite orbits. É. Ghys
showed that such actions are classified up to semi-conjugacy by a complete invariant, the
bounded Euler class, taking values in the second bounded cohomology of the group G
[Ghy87a]; a more elementary interpretation was given by Matsumoto in terms of rotation
numbers [Mat86]. These invariants have been largely used to get a global understanding
of the space of actions on the circle in various cases (an important example are surface
groups [Mat87, Man15, MW17]). The case of actions with a finite orbit reduces, up to
passing to a finite index subgroup, to study actions on the real line, for which no such tools
are available.
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For actions on the real line by homeomorphisms, a vast part of the literature is de-
voted to question 1 above. For a countable group G, the existence of a faithful action on
R is equivalent to the existence of a left-invariant total order on G, and various results
investigate the structure of the space of invariant orders. The pool of left-orderable groups
for which question 2 has been addressed, or can be answered using results on left-orders,
is somewhat limited (almost always groups that admit very few actions on the line up to
semi-conjugacy).

If many rigidity and classification results are known for actions on intervals in regularity
Cr, r > 1, these are also more rare in regularity C1. Here distorsion arguments are not
applicable, and essentially the only additional tools available over the C0 case come from
the analysis of elements with hyperbolic fixed points, which exist in great generality by a
result of Deroin, Kleptsyn and Navas [DKN07].

The result presented here aim at filling in part this gap, by proving structure and rigidity
theorems for C0 and C1 actions on the real line for some classes of groups, proposing a
framework with new type of questions, and exhibiting new examples and phenomena in
this setting.

2.2 The space of representations to Homeo+(R) up to semi-
conjugacy

This section is mostly introductory and contains almost no original results, with the ex-
ception of Theorem 2.2.3 (proved in [8]), which revisits and complements results of Deroin,
Kleptsyn, Navas and Parwani [DKNP13]. However, the point of view presented on the
study of actions on the line, motivated in part by that result and the question it suggests,
has perhaps an original component.

2.2.1 Minimal sets and semi-conjugacy

Let G be a finitely generated group. We denote by Repirr(G,R) the set of representations
ρ : G → Homeo+(R) whose image has no global fixed point in R; such representations
will be called irreducible (in this context, we will use the term “representation" and “ac-
tion” interchangeably). Restricting to irreducible representations is not a loss of generality
(upon removing the fixed points, the induced action on every connected component is irre-
ducible). The space Repirr(G,R) is naturally a topological (Polish) space, with the topology
induced from pointwise convergence of representations in the compact open topology on
Homeo+(R).

Given ρ ∈ Repirr(G,R), a non-empty closed, minimal G-invariant subset Λ ⊂ R will be
called for short minimal set for ρ. It is well-known (see [Nav11, §2.1]) that if G is finitely
generated, every irreducible representation ρ ∈ Repirr(G,R) admits a minimal set. Every
minimal set Λ satisfies one of the following possibilities.

• Either Λ = R, that is, the representation ρ is minimal.

• Or Λ has no isolated point and empty interior (also called an exceptional minimal
set); in this case Λ is the unique minimal set of ρ.

• Or Λ is discrete and consists of a single orbit, in this case all minimal sets have this
property, and the action of G on any of them factors through an epimorphism to Z.
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If a representation ρ is not minimal, its study naturally splits into the analysis of
the action of G on a minimal set Λ, and the action of the stabilisers of each connected
component of R \ Λ. One can associate to ρ a new representation ρ̄ that models how ρ
acts on its minimal set (this process is sometimes called the minimalisation). Namely if ρ
admits an exceptional minimal set Λ, we can associate to it a minimal representation ρ̄ by
collapsing all connected components of R\Λ to obtain a new copy of the real line, together
with a continuous, non-decreasing map h : R→ R which intertwines ρ and ρ̄ . The case of
a discrete minimal set Λ is somewhat degenerate and collapsing components of R \Λ does
not give back a copy of the real line; in this case we proceed in two steps by first blowing
up every point in Λ to a small interval (extending the action by interpolation), and then
collapse the connected components of the complement: the resulting action is conjugate
to an action ρ̄ which takes values in the group of integer translations Z. An action taking
values in the group of translations will be called cyclic.

This discussion naturally leads to the notion of semi-conjugacy.

Definition 2.2.1. Two representations ρ1, ρ2 ∈ Repirr(G,R) are semi-conjugate if there
exists a non-decreasing map h : R→ R which intertwines ρ1 and ρ2.

Semi-conjugacy is an equivalence relation. The map h is not required to be continuous
to make sure that the relation reflexive; but semi-conjugacy coincides with the equivalence
relation generated by the pairs (ρ1, ρ2) such that there exist a continuous, non-decreasing
map which intertwines ρ1 and ρ2, as follows from the previous discussion. It also follows
that every representation ρ ∈ Repirr(G,R) is semiconjugate to a representation ρ̄ which is
either minimal or cyclic. Moreover such a minimal or cyclic representative is unique up to
topological conjugacy. In fact, a non-decreasing equivariant map between minimal actions
on R is automatically a homeomorphism.

2.2.2 The harmonic space of a group acting on the line

Given a finitely generated group, we will be interested on the topological and dynamical
properties of representations in Repirr(G;R) up to semi-conjugacy. One might be tempted
to consider the quotient of Repirr(G;R) by the semi-conjugacy relation as a moduli space for
actions of G on the line; unfortunately this quotient is usually quite ill-behaved. In fact for
many groups G the semi-conjugacy relation is not smooth in the Borel sense, namely there
is no Borel map from Repirr(G;R) to any standard Borel space which is constant on semi-
conjugacy classes and separates them. This can be seen as an obstruction to find explicit
invariants that classify actions up to semi-conjugacy. This contrasts with the case of actions
on the circle (by the results of Ghys [Ghy87b] and Matsumoto [Mat86] described above) for
which the quotient by the semi-conjugacy relation is actually a compact metrisable space
(see Mann and Wolff [MW17]).

For finitely generated groups, a partial solution to this problem one can however con-
sider a slightly larger quotient space, called the harmonic space of G, which is a compact
space endowed with a real flow (D,Ψ) and a G-action preserving each Ψ-orbits, such that
the Ψ-orbits correspond to semi-conjugacy classes. The construction of this space depends
on results of Deroin, Kleptsyn, Navas and Parwani [DKNP13], and elaborates on a previous
construction of Deroin [Der13]. The starting point of this construction is to observe that
the space Repirr(G,R) is naturally endowed with a flow induced by the conjugation action
of the group of translations, namely

Ψ: R× Repirr(G,R)→ Repirr(G,R), Ψt(ρ)(g) = Ttρ(g)T−t
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where Tt denotes the translation x 7→ x+ t. The flow Ψ will be called the translation flow.
The group G acts on Repirr(G,R) by preserving Ψ-orbits via the formula

g · ρ = Ψρ(g)(0)(ρ).

Deroin showed in [Der13] that every representation ρ ∈ Repirr(G,R) can be conjugated
to a representation contained in some compact Ψ-invariant subset of Repirr(G,R). A more
“universal” version of his construction can be obtained from subsequent results of Deroin,
Kleptsyn, Navas and Parwani [DKNP13] on random walk on groups acting on the line.
Namely the choice on G of a symmetric, finitely supported probability measure µ allows
to consider a distinguished set of repesentatives of representations in Repirr(G,R), the µ-
harmonic representations (those for which the Lebesgue measure is µ stationnary). The
results in [DKNP13] imply that every representation ρ is semi-conjugate to a µ-harmonic
one, and that the space of µ-harmonic representations, normalised in a suitable sense, is
compact and Ψ-invariant. We resume below the properties of this construction that will
be important for our purposes.

Theorem 2.2.2 (Deroin, Kleptsyn, Navas, Parwani [DKNP13], see §3 in [8]). Let G be
a finitely generated group. Then there exists a subset D ⊂ Repirr(G,R) satisfying the
following.

1. D is compact invariant under the translation flow Ψ.

2. Every ρ ∈ D is either minimal or cyclic.

3. For every ρ ∈ Repirr(G,R) there exists a unique ρ∗ ∈ D and a semi-conjugacy h : R→
R between ρ and ρ∗ such that h(0) = 0 (the map h is called a pointed semi-conjugacy).

By definition, a space D as in Theorem 2.2.2 comes with a map

rD : Repirr(G,R)→ D,

which associates to every representation ρ its unique representative ρ∗ up to pointed semi-
conjugacy. In [8, §3] we provide a proof of the following (this formulation appears in
[10]).

Theorem 2.2.3 (see §3 in [8]). Let D be any space as in Theorem 2.2.2. Then the map

rD : Repirr(G,R)→ D

is a G-equivariant continuous retraction, with the property that two representations ρ1, ρ2
are semi-conjugate if and only if r(ρ1) and r(ρ2) belong to the same Ψ-orbit.

The non-trivial statement in Theorem 2.2.3 is the continuity of the map rD (the second
assertion follows from the properties of D in Theorem 2.2.2). This is not apparent from the
results in [DKNP13], as the semi-conjugacy of an action ρ to a harmonic action is obtained
through a probabilistic argument to find a stationary measure. Our proof proceeds through
an intermediate step, namely identifying of the space D with a suitable quotient of the space
of left-invariant pre-orders on G.

A consequence of Theorem 2.2.3 is that the space with flow (D,Ψ) is uniquely deter-
mined by G in the following sense.

Definition 2.2.4. A flow equivalence between spaces with flows (Y1,Ψ1), (Y2,Ψ2) is a
homeomorphism h : Y1 → Y2 such that for every y ∈ Y2, there exists h ∈ Homeo+(R) with
h(Ψt

1(y)) = Ψh(t)(h(y)).
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Corollary 2.2.5 (Uniqueness up to flow equivalence). Let D1,D2 be spaces as in Theorem
2.2.2. Then the map h = rD2 |D1 is a G-equivariant flow equivalence h : (D1,Ψ|D1) →
(D2,Ψ|D2), which by construction satisfies rD2 = h ◦ rD1.

Definition 2.2.6. Let G be a finitely generated group. Given a subset D ⊂ Repirr(G,R)
satisfying the conclusion of Theorem 2.2.2, we will refer to the space with flow (D,Ψ),
considered up to G-equivariant flow equivalence, as the harmonic space of G. It is endowed
with the associated retraction rD : Repirr(G,R)→ D as in Theorem 2.2.3. 1

We shall specify that we consider a representative of (D,Ψ) it when we choose D as in
Theorem 2.2.2, and let Ψ be the restriction of the translation flow. By [DKNP13] such a
representative can always be chosen consisting of µ-harmonic representations (and this is
actually the only general way to find one known so far). This choice has additional useful
properties (see in particular Deroin and Hurtado [DH20]), however we shall not need this.
Remark 2.2.7. The terminology has nothing to do with the notion of abstract harmonic
space in analysis (which is a locally compact space equipped with a sheaf of functions
satisfying a series of axioms); hopefully the context leaves no room for confusion.

Let us go back to our initial discussion. Even though the space of semi-conjugacy
classes in Repirr(G,R), defined naively as the quotient by the semi-conjugacy relation, is
badly behaved (as a topological, or even just Borel space), Theorem 2.2.3 clarifies exactly
how “bad” it can be: it identifies with the space of orbits D/Ψ of the flow (D,Ψ). In
other words, the dynamics of the flow (D,Ψ) is responsible for all the complexity of the
semi-conjugacy relation in Repirr(G,R), and retains topological information on how the
semi-conjugacy classes sit inside Repirr(G,R). This has a few immediate consequences,
and this point of view suggests various qualitative questions that should be addressed on
the harmonic space (D,Ψ) of a group G, which provide viable goals even when a completely
explicit description of (D,Ψ) is not.

As perhaps the most basic consequence, Theorem 2.2.3 clarifies completely the possible
nature of the semi-conjugacy relation on Repirr(G,R) in the sense of Borel bireducibility.
This theory provides a framework to tell how difficult a classification problem is (in our
case, classifiying actions of a given group G up to semi-conjugacy); see the book of Kechris
[Kec21]. Most classification problems can be interpreted as a (Borel) equivalence relationR
on a standard Borel spaceX. The simplest type are the smooth equivalence relations, which
are those for which there exists a Borel map f : X → R, such that (x, y) ∈ R if and only if
f(x) = f(y) (they correspond to classification problems that can be solved by exhibiting a
complete invariant). More generally one says that an equivalence relation (X1,R1) is Borel
reducible to (X2,R2) if there exists a Borel map f : X1 → X2 such that x, y are equivalent
if and only if f(x), f(y) are (this means that the first classification problem can be reduced
to the second), and that the relations are bireducible if the symmetric statement also
holds. From Theorem 2.2.3 it follows that the semi-conjugacy relation on Repirr(G,R) is
Borel bireducible to the orbit-equivalence relation of the flow (D,Ψ). Equivalence relations
induced by flows are well-understood and can have only two bireducibility types, see [Kec21,
Theorem 8.32], leading to the following:

1In [8, 10], we call (D,Ψ) the Deroin space for G as it is, indeed, a universal version of the construction
in Deroin [Der13], where the idea of looking at spaces with flows in this context was first introduced (this
idea is not explicitly mentioned in [DKNP13]). However, after reflection and discussions with colleagues,
I now believe that this choice does not give enough credit to the fundamental results in [DKNP13], and
decided to change it.
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Corollary 2.2.8. The semi-conjugacy equivalence relation on Repirr(G,R) is either smooth,
or it is Borel bireducible to the orbit-equivalence relation of the Bernoulli shift Z y {0, 1}Z.
It is smooth if and only if the harmonic space (D,Ψ) has a smooth orbit equivalence re-
lation; equivalently if it admits a Borel transversal (a subset intersecting each Ψ-orbit in
exactly one point).

Which case in Corollary 2.2.8 holds depends on the groupG under consideration, tracing
a natural dividing line among groups acting on the line according to the complexity of their
actions up to semi-conjugacy. The following question then can be asked when addressing
the structure of actions on the line of any given group.

Question 2.2.9. For which groups G the semi-conjugacy relation on Repirr(G,R) (equiv-
alently the orbit-equivalence relation on (D,Ψ)) is smooth in the Borel sense?

Another direction of application of Theorem 2.2.3 is related to the study of rigidity and
flexibility of group actions on the line. In a broad sense, this topic aims at understanding,
given a group G, how its representations can be modified (up to semi-conjugacy) by small
perturbations, which boils down to understand how semi-conjugacy classes accumulate
onto each other. This leads to several tightly related notions of rigidity and flexibility
for representations, appearing in the literature on group actions on one-manifolds, see e.g.
[Man18,MR18,MW17,KKM19]. We will use here the following terminology, analogous to
the one used by Mann and Wolff [MW17] for actions on the circle.

Definition 2.2.10. A representation ρ ∈ Repirr(G;R) is locally C0-rigid if it is an interior
point in its semi-conjugacy class. It is C0-rigid if its whole semi-conjugacy class is open.
A representation which is not locally C0-rigid is called flexible.

As a consequence of Theorem 2.2.3, the C0-rigidity of a representation can be read in
the harmonic space.

Corollary 2.2.11 ([8]). Let G be a finitely generated group and (D,Ψ) be its harmonic
space. Then a representation ρ ∈ Repirr(G,R) is C0-rigid if and only if the orbit of rD(ρ)
is an open subset of D, equivalently if rD(ρ) is an isolated point in any local cross-section
of Ψ.

Moreover local C0-rigidity and C0-rigidity are equivalent concept for a minimal repre-
sentation.

Question 2.2.12. For given groups G, study which representations are (locally) C0-rigid
representations. More generally find interesting Ψ-invariant open subset of the harmonic
space (D,Ψ) (these correspond to rigid families of representations, in the sense that any
small perturbation will remain semi-conjugate to a representation in the same family).

Another general theme in the study of representation spaces is the classification of
their connected and path-connected components. See for instance the works of Matsumoto
[Mat86], Mann [Man15] and Mann and Wolff [MW17] for the case of surface group actions
on the circle (for which this problem remains open in general). It is not difficult to see that
for a finitely generated group G, the semi-conjugacy classes in Repirr(G;R) are always path
connected. Again in analogy with the terminology of [MW17], one may call a represen-
tation ρ ∈ Repirr(G;R) path-rigid if its path-component coincides with its semi-conjugacy
class (that is, ρ cannot be deformed along a continuous path into any non-semi-conjugate
representation).

Since every ρ is connected by a path to rD(ρ), Theorem 2.2.3 implies the following.
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Corollary 2.2.13. For every finitely generated group, the map rD puts the (path-)connected
components of Repirr(G,R) in one-to-one correspondence with those of the harmonic space
D of G.

Question 2.2.14. Given a finitely generated group G, study the (path-)components of its
harmonic space. In particular determine which representations of G are path-rigid.

To conclude this part with a simple observation interpreting the fixed points and peri-
odic orbits of the flow (D,Ψ), which will be useful in what follows.

Proposition 2.2.15 (see Proposition 3.10 in [10]). Let (D,Ψ) be the Deroin space of a
finitely generated group G.

1. The set of fixed points of Ψ correspond to the the semi-conjugacy classes of actions
of G by translations, i.e non-zero homomorphisms of G to (R,+) up to a positive
scalar. In particular it is either empty or homeomorphic to a sphere Sd, d ≥ 0.

2. The non-trivial periodic orbits of (D,Ψ) correspond to semi-conjugacy classes of min-
imal actions of G on R which commute with the group of integer translations, and
descend to an action on the circle R/Z (which is moreover minimal and proximal).

2.2.3 A short survey of some previous results

I conclude this section with a (non-exhaustive) survey of some classes of groups for which
C0 and C1 actions on the line were well-understood, and give some first examples of
description of their harmonic spaces. These examples add some context to the results that
will come later.

A classical argument, which is based essentially on Hölder’s theorem [Höl01], implies
the following.

Theorem 2.2.16 (See Plante [Pla75], Navas [Nav10]). Let G be a finitely generated group
which does not contain a free semi-group on two generators (e.g. if G hassubexponential
growth). Then every ρ ∈ Repirr(G,R) is semi-conjugate to a representation taking values
in the group of translations (R,+).

It follows from Proposition 2.2.15 that the harmonic space of G is either empty (if G
has no non-trivial action on R) or homeomorphic to a sphere Sn, n ≥ 0, with trivial flow.

An important class of groups falling in the setting of Theorem 2.2.16 are finitely gen-
erated abelian and nilpotent groups. In this case there is also considerable literature on
actions on regularity Cr, r ≥ 1. A combination of the classical results of Hölder’s [Höl01],
Denjoy [Den32] and Kopell [Kop70], implies that if G is an abelian group, then every action
ρ : G→ Diff2([0, 1]) without fixed point in the interior is topologically conjugate (on (0, 1))
to an action by translations. These results fail to hold in regularity C1, as one can see from
the examples of Tsuboi [Tsu95], generalising the classical constructions of Denjoy [Den32]
and Pixton [Pix77]. The situation for nilpotent groups is completely analougous to the
abelian case. Plante and Thurston showed (building on the case of abelian groups) that
every nilpotent subgroup of Diff2

0([0, 1]) is abelian [PT76]; in particular it is conjugate to
a group of translations provided it is irreducible on (0, 1). This is far from being true for
C1 actions, as shown by Farb and Franks [FF03].

Beyond Theorem 2.2.16, there were some more groups for which actions by homeo-
morphisms (or even C1-diffeomorphisms) on R were completely understood up to semi-
conjugacy, in particular many groups that admit only a finite number of such actions.
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An well-studied family of examples are the solvable Baumslag-Solitar groups BS(1, n) =
〈a, b : aba−1 = bn〉. The group BS(1, n) has a natural (faithful) action on R generated by
the affine transformations a : x 7→ nx and b : x 7→ x+1, as well as a (non-faithful) cyclic ac-
tion coming from its abelianisation Gab ' Z. Every representation ρ ∈ Repirr(BS(1, n),R)
is semi-conjugate to one of these two examples, up to the orientation (see Rivas [Riv10]).
From this, one can easily describe the harmonic space of BS(1, n), which is homeomorphic
to a circle, with flow having two parabolic fixed points and two non-degenerate orbits,
see Figure 2.1. For C1-actions, work of Bonatti, Monteverde, Navas and Rivas [BMNR17]
shows that every action ϕ : BS(1, n) → Diff1([0, 1]) without fixed point in the interior
is conjugate on (0, 1) to the affine action, and moreover the conjugacy (which need not
be C1) preserves the values of derivatives of fixed points of homotheties (this very useful
phenomenon is called rigidity of multipliers).

Figure 2.1: The harmonic space of the Baumslag-Solitar group BS(1, 2).

Another particular source of examples are central extension of some groups acting on
the circle. From every group G ≤ Homeo+(S1), one can pass to a central extension G̃ with
infinite cyclic center that acts on the line. Actions of such groups can often be understood
by reducing the problem to the circle. Various groups are known to admit only one action
on the circle up to semi-conjugacy and to the orientation, such as Thompson’s group T or
the Fuchsian group ∆(2, 3, 7); the same holds true for the corresponding central extension
acting on the real line [7,MT23]. The harmonic space of such a group will consist of two
copies of S1, which are periodic orbits for the flow.

2.3 Structure theorems for actions on the line via lamina-
tions

This section describes some results in our monograph [8] and the subsequent paper [9].
These works introduce some new ideas that allow to understand C0 and C1 actions on the
line of various groups. The common ingredient in both papers is the role played by actions
which have an invariant lamination. For expository reason [9] is presented first, although
this paper follows and builds on [8].

2.3.1 Solvable groups and affine actions

In [9] we consider the class of finitely generated solvable groups. Looking at this case is
natural in view of the classical results on abelian and nilpotent groups described above, and
because this class contains perhaps the smallest of finitely generated groups not covered
by Theorem 2.2.16. The study of this case was initiated in by J.F. Plante [Pla83]. A
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fundamental source of examples of solvable (in fact metabelian) groups of homemorphisms
of the real line is given by subgroups of the real affine group

Aff(R) = {x 7→ ax+ b, a ∈ R>0, b ∈ R}.

Motivated by the analogy with Theorem 2.2.16, Plante initiated the study of the following
question: if G is a finitely generated solvable group, under which conditions an action
ϕ ∈ Repirr(G,R) is semi-conjugate to an affine action ψ : G→ Aff(R)? He gave an example
showing that this is not always the case. More precisely, he constructed a faithful minimal
action of the group G = ZoZ on R which is not semi-conjugate to an affine action (described
in Example 2.3.7 below). However he provided some sufficient conditions on an action which
imply that the answer is affirmative: he showed in particular that this is always the case
if the group G is polycyclic, or if the action is by analytic diffeomorphisms. Since Plante’s
work, a number of papers have addressed the study of actions of various classes of solvable
groups on the line, with affine actions often playing a central role [Pla84,Nav04a,Nav04b,
BMNR17,GR18] . In particular Navas showed that actions by diffeomorphisms of class at
least C2 are always semi-conjugate to affine action, and obtained an algebraic description of
solvable groups acting faithfully by C2 diffeomorphisms on one-manifolds [Nav04a]. These
results is crucially based on the restrictions on abelian groups of C2-diffeomorphisms, in
particular Koppel’s lemma, which fail in class C1.

The following result from [9] shows that Plante’s question has nevertheless an affirma-
tive answer for actions by C1-diffeomorphisms on compact intervals.

Theorem 2.3.1 (C1-actions of solvable groups on intervals). Let G be a finitely generated
virtually solvable group. Then for every C1 action ϕ : G → Diff1

+([0, 1]) without global
fixed points in the interior, the action of G on (0, 1) is semi-conjugate to an affine action
ψ : G → Aff(R). Moreover, the semi-conjugacy is automatically a topological conjugacy
provided ψ has non-abelian image.

The main new content of the result is the existence of the semi-conjugacy; it had been
previously shown in [BMNR17] that any C1-action on [0, 1] which is semi-conjugate (on
the interior) to a non-abelian affine action is automatically minimal, and hence the semi-
conjugacy is a conjugacy.

Even if the answer to Plante’s question is negative for actions that are merely C0, we
show that it is still always positive in a local sense, at the level of germs near any given
fixed point. A precise statement is the following.

Theorem 2.3.2 (Semi-conjugacy “at infinity” to an affine action). Let G be a finitely
generated virtually solvable group. Then for every ϕ ∈ Repirr(G,R) there exists an affine
action ψ : G → Aff(R) without fixed points, and a non-decreasing map h : (a,+∞) → R
with limx→+∞ h(x) = +∞, such that for every g ∈ G we have ψ(g) ◦ h(x) = h ◦ ϕ(g)(x)
for all x large enough. Such an action ψ is unique up to affine conjugacy.

This result can be compared with a result of Chiswell and Kropholler [CK93], stating
that a finitely generated solvable group admits a non-trivial homomorphisms to Homeo+(R)
if and only if it admits a non-trivial homomorphism to the group (R,+) of translations
(for any group, the existence of a non-trivial homomorphism to Aff(R) is easily shown to
be equivalent to the existence of a non-trivial homomorphism to (R,+)). This result was
famously generalised to all amenable groups by Witte Morris [Mor06]. In those results the
construction of a homomorphism to (R,+) is quite indirect and does not say much on the
original action one started with; instead Theorem 2.3.2 allows to associate to an any given
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action on the line of a solvable group an affine action with a clear dynamical interpretation.
This stronger phenomenon appears so far to be specific to solvable groups.

Finally for a class of finitely generated solvable group, we show that any small pertur-
bation of a non-abelian affine action in the space of the representations Repirr(G,R) must
remain semi-conjugate to an affine action, which can also be seen as positive answer to
Plante’s question in a local (in the space Repirr(G,R)) sense.

Theorem 2.3.3 (C0-rigidity of the family of affine actions). Let G be a finitely generated
group which is virtually nilpotent-by-nilpotent (e.g. any virtually solvable group which is
linear over a field). Then the set of representations ϕ ∈ Repirr(G,R) which are semi-
conjugate to a non-abelian affine action is open in Repirr(G,R).

This result is false for arbitrary solvable groups: we give an example of a 3-step solvable
group failing to have this property.

Even though affine actions appear to be the main character in the results above, proving
them requires some understanding actions of finitely generated solvable group that are not
semi-conjugate to affine actions. The main content of [9] is a qualitative description of the
dynamics of such actions, summarized in Theorem 2.3.11 below. That result is based on
the study of a class of actions with an invariant lamination, developed in [8]. The discussion
of that result is postponed after a digression on this.

2.3.2 Invariant laminations and R-focal actions

We denote by R(2) = {(x, y) ∈ R2 : x < y},identified with the set of bounded open intervals
of R, with the topology induced from R2. We say that two intervals I, J are linked if they
overlap non-trivially, but neither one is contained in the other.

Definition 2.3.4. A lamination of the real line R is a closed subset of L ⊂ R(2) which
does not contain any linked pair of intervals.

Definition 2.3.5. Given a group G, an action ρ ∈ Repirr(G,R) is R-focal if it preserves a
lamination L such that for every I ∈ L, there exists a sequence of (gn) of such that gn(I)
is an exhaustion of R.

This notion is invariant under semi-conjugacy, so that for our purposes it is enough to
study minimal R-focal actions.

The terminology comes from the study of actions on trees (and hyperbolic spaces).
Recall that an isometric group action on a simplicial tree T is focal if it fixes a unique
end ω ∈ ∂T and contains hyperbolic elements. In fact we develop a formalism in [8] which
allows to effectively visualise R-focal actions in terms of trees, that I only briefly outline
here. If L is a a lamination, the partially ordered set (L,⊂) can be always completed
through a standard procedure (described in [8]) to obtain a G-action on a partially ordered
set (T, /) whose totally ordered subsets are isomorphic to (R,≤), and where any two point
admit a smallest common upper bound. We call such a set a directed tree in [8]. In other
words (T, /) can be identified with a real tree (more precisely a non-metric real tree in the
terminology of [FJ04]), with the partial order / induced by the choice of an end ωT ∈ ∂T,
called the focus, which is a maximal point at infinity. The R-focal condition on the G-action
on the lamination implies that that G-orbit of every point x ∈ T is cofinal in (T, /); we
call such actions focal in this non-metric context. The lamination L also carries a second
partial order <, where I < J denotes the fact that sup I ≤ inf J . The two partial orders
⊂, < on L are orthogonal: a pair of elements is comparable for one if and only if it is
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not comparable for the other. The order < also extends to a G-invariant partial order ≺
on T which is orthogonal to the tree order /. A triple (T, /,≺) of a directed tree with
an additional orthogonal order is called a planar directed tree (as ≺ can be thought of
an order on branches determined by the choice of an embedding of T in the plane). In
particular � induces a linear order on the set of ends ∂T \ {ωT} with the focus removed.
From the G-action on the ordered set (∂T \ {ωT},≺) one can recover the original action
on R through a standard dynamical realisation procedure (an intuitively correct picture is
to imagine the tree T as “hanging over the line" in the upper half plane, with the focus ω
at ∞ and the remaining ends on the line). This construction implies the following (more
precise definitions and details can be found in [8]).

Proposition 2.3.6 ([8]). An action ϕ ∈ Repirr(G,R) is R-focal if and only if there exists a
focal action of G on a separable planar directed tree (T, /,≺) such that ϕ is semi-conjugate
to the dynamical realisation of the action of G on (∂T \ {ωT},≺).

The point of view of trees is extensively used in [8, 9]. Here it won’t be needed to
understand the statements of the results, although it can be kept in mind to help intuition.
Example 2.3.7. A fundamental example of R-focal action is the action of Z oZ constructed
by Plante [Pla83], which is not semi-conjugate to an affine action. To define it, it is
convenient to think of Z oZ as the semi-direct product Z[X,X−1]oZ, where Z acts on the
ring of Laurent polynomial Z[X,X−1] by powers of X. The group ZoZ then acts affinely on
Z[X,X−1]. This action preserves the natural lexicographic order ≺ on Z[X,X−1], obtained
by declaring a polynomial p � 0 if its coefficient of smallest degree is positive. By taking a
completion of the ordered set (Z[X,X−1],�) one obtains an action on R. Figure 2.2 shows
a portion of the graph of some elements of Z o Z in this action. One can show that this
action is minimal and R-focal, see [8, Example 7.11]. The natural invariant lamination is
discrete, and the corresponding tree coincides with the simplical Bass-Serre tree associated
to a natural splitting of ZoZ as an ascending HNN-extension. (Of course we could have also
defined the partial order ≺ by looking at the coefficient with highest degree. Considering
also the flip of orientations, this construction gives four non-semiconjugate actions in total.)

g

h0
h1

h2

Figure 2.2: The Plante action. Here Z o Z = 〈g, h|[gnhg−n, h] = 1∀n〉, and hi = gihg−1.
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An important consequence of R-focality of an action is that individual elements g ∈ G
satisfy a dichotomy analogous to the classification of isometries of trees into hyperbolic
and elliptic. Let us fix the following terminology. We will say that a homeomorphism of
the real line f ∈ Homeo+(R) is:

• a pseudohomothety if it has a non-empty compact set of fixed point K ⊂ R and for
every x /∈ [minK,maxK] we have |fn(x)| → ∞ for n → +∞ (in which case we say
that f is an expanding pseudohomothety) or the same holds for n → −∞ (in which
case we say that f is contracting).

• totally bounded if its orbits are all bounded (equivalently its set of fixed points accu-
mulate on ±∞).

Proposition 2.3.8 ([8]). If G is a group and ρ ∈ Repirr(G,R) is an R-focal action, then
every element of G is either a pseudohomothety or it is totally bounded.

The fact that an action is R-focal, alone, gives limited information: such actions can be
quite wild (think of the subgroup of all homeomorphisms of R that preserve a lamination).
It becomes much more useful if in the presence of additional structure preserved by the G
action on an invariant lamination L. The best possible case would be that the G-action on
a tree associated to a lamination preserves an invariant R-tree metric. While this is often
too much to ask, in many situation it is still possible to find a notion of “horospheres" on
L (or on the associated tree), so that the G-action on the set of horospheres is governed
by another G-action on R. This is the content of the following definition, which will be
crucial in what follows.

Definition 2.3.9. A horograding of a lamination L is a map h : L → R such that h(I) ≤
h(J) whenever I ⊆ J .

Let ρ ∈ Repirr(G,R) be an R-focal action, and j ∈ Repirr(G,R) be another (irreducible)
action. We say that ρ can be horograded by j if there exists an invariant lamination L and
an equivariant horograding h : L → R which intertwines ρ and j.

For example, the the case where the horograding action j takes values in the group of
translations (R,+) corresponds exactly to the case where the group action of an associated
tree (T, /) preserves an R-tree metric on T. The Plante actions of Z o Z described above is
horograded by the standard cyclic action by integer translation of the natural Z-quotient.

The horograding action retains large-scale information on the dynamics of the original
action. For instance we have the following.

Proposition 2.3.10. Let ρ ∈ Repirr(G,R) be an R-focal action, and assume that ρ is
positively horograded by j. Then for every g ∈ G the following holds

1. if j(g) has no fixed point accumulating to +∞, then ρ(g) is a pseudo-homothety,
which is expanding if j(g)(x) > 0 for all x large enough, and contracting otherwise.
If moreover j(g) has no fixed point on R, then ρ(g) has a unique fixed point (we say
that it is a homothety).

2. Else, ρ(g) is totally bounded.

Although these notions might seem technical, a fact that we realized from [8] is that
R-focal actions appear more often than one might think. In particular this class contains
many examples of actions that can be considered “exotic” in some way (including many
isolated examples that had been studied before, such as the Plante action of Z o Z). The
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notion of horograding turns out to be crucial, as it it gives a way to relate them to more
“familiar” actions, in a way which is weaker than semi-conjugacy, but still useful. The
results below will provide examples of this principle.

2.3.3 General actions of solvable groups

With the language of R-focal actions (and their horogradings) in hand, we can now state
a result that elucidates the behaviour of arbitrary C0-actions of finitely generated solvable
groups in the line, which is the actual main result in [9]. Recall that the Fitting subgroup
Fit(G) of a group G is the union of all nilpotent normal subgroups of G (it is a subgroup
by Fitting’s theorem).

Theorem 2.3.11 ([9]). Let G be a finitely generated virtually solvable group. Then every
action ρ ∈ Repirr(G,R) satisfies one of the following two cases;

1. either ρ is semi-conjugate to an affine action;

2. or ρ is semi-conjugate to a minimal R-focal action, and in this case ρ can be horo-
graded by an action ρ∗ which factors through G/Fit(G).

A crucial feature of Theorem 2.3.11 is that it can be applied inductively until finding
an affine action. Indeed note that G/Fit(G) has smaller solvable length than G. If ρ is
R-focal, and if the horograding action ρ∗ is not semi-conjugate to an affine action, then
it must be again R-focal and horograded by an action (ρ∗)∗ of a quotient of even smaller
solvable length. In finitely many steps, we must reach an affine action ψ : G→ Aff(R) (this
is in fact the affine action appearing in Theorem 2.3.2, which is a direct consequence of
Theorem 2.3.11). This shows that actions on the line of a solvable groups on the line are
naturally organized in a tower of finitely many levels of complexity, where affine actions
are the simplest.

Although it might not be apparent from its statement, Theorem 2.3.11 is yet another
form of the dychotomy between freeness and non-freeness, where the second item captures
the structure imposed by non-freeness. The idea of its proof is the following: let ρ ∈
Repirr(G,R); up to taking a semi-conjugate action and passing to a quotient, we can
suppose without loss of generality that ρ is minimal and faithful. Consider then a non-
trivial abelian normal subgroup N E G. If N acts freely, by Hölder’s theorem it is semi-
conjugate to a subgroup of (R,+). In that case, one can conclude that ρ is semi-conjugate
to an affine action (essentially because the normaliser of a dense group of translations is
contained in Aff(R)). If N does not act freely, by inspecting the combinatorics of the fixed
points of its elements (and the maximal intervals of their complement) one obtains the
existence of an invariant lamination. To find a horograding one needs to extract a minimal
lamination, and then study the action of G on the associated tree T: roughly speaking, the
action of any nilpotent normal subgroup on it must be of elliptic type, in the sense that it
cannot move any point towards the focus. This allows to quotient T by Fit(G) to obtain
a new directed tree, and conclude by induction.
Example 2.3.12 (Classifying all actions of Z oZ.). Let us illustrate Theorem 2.3.11 with the
example of G = Z o Z = Z[X,X−1] oZ. We have Fit(G) = Z[X,X−1]. Hence by Theorem
2.3.11 any R-focal action is necessarily horograded by an action of the standard cyclic
quotient of G. Out of this and of Proposition 2.3.10 it is not difficult to see that the only
R-focal actions of G are the four Plante actions described in Example 2.3.7 [9, Proposition
6.3]. The affine actions of G are easily described by a separate argument [9, Lemma 6.1].
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Recalling that G has the presentation G = 〈t, h|[t, hnthn] = 1∀n〉, then the affine actions
of G are, up to semi-conjugacy:

• actions by translations obtained by setting

ρ(t) : x 7→ x+ α, ρ(h) : x+ β (α2 + β2 = 1);

• non-abelian affine actions obtained by setting

ρ(t) : x 7→ x± 1, ϕ(h) : x 7→ λx (λ > 0, λ 6= 1).

The non-abelian affine actions are obtained from the action on the ring Z[X,X−1] by
endowing it with the pre-order induced by evaluation of polynomials on λ. For λ → ∞
and for λ → 0 this resembles a lexicographic order: from this one can show that the
corresponding representative in the harmonic space (D,Ψ) must necessarily converge to a
Plante action. With slightly more care, it is not too difficult to obtain a full the description
of the harmonic space of Z o Z, shown in Figure 2.3.

Figure 2.3: The harmonic space (D,Ψ) of the group Z o Z. The space D is homoeomorphic to the
connected sum of two closed disks at two points on the boundary. The black circle is fixed by the
flow, and parametrises actions by translations of (Z o Z)ab ' Z2 (Proposition 2.2.15). The rest of
the space is foliated by Ψ-orbits as shown: the two limit points are the cyclic action of the standard
Z-quotient, and its conjugate by the reflection (this is because in all affine actions and in the Plante
action, the displacement of the homothety ρ(h) is infinitely larger than the one of ρ(t) near∞). The
four boundary orbits are the Plante actions, the remaining orbits are the non-abelian affine actions,
divided in four regions according to the choices λ ∈ (0, 1), λ ∈ (1 +∞), and ρ(t) : x 7→ x± 1. When
λ approaches 1, the orbits approach the circle of fixed points: the flow slows down, and inverts its
direction when λ crosses 1. I thank M. Triestino for the picture.

The proof of Theorem 2.3.1 uses the example of Z o Z. As another consequence of
Theorem 2.3.11, we show every minimal R-focal action of a solvable group G on the line,
there is a copy of Z o Z in G whose action has no global fixed point and is semi-conjugate
to a Plante action. This reduces the problem to see that the latter cannot be C1 (up to
semi-conjugacy). We do so by combining the intuition given by Figure 2.3, that shows that
the latter is a limit of affine actions, together with the method used in [BMNR17] to show
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that a topological conjugacy of an affine action to any C1 action preserve the derivative at
hyperbolic fixed points (which explode in the limit).

Finally Theorem 2.3.3 is a manifestation of the fact that, if the group G is metanilpotent
(e.g. linear), then G/Fit(G) is nilpotent and can only act by translations up to semi-
conjugacy (Theorem 2.2.16). In this case Theorem 2.3.11 gives stronger information.

It is apparent from Figure 2.3 that the harmonic space (D,Ψ) of Z o Z has very re-
stricted dynamics: it admits a locally closed section intersecting each orbit exactly once
(in particular its space of orbits is smooth in the Borel sense), and all orbits converge to
a limit point. In view of Theorem 2.2.3, this corresponds to the fact that the structure of
semi-conjugacy classes in Repirr(Z oZ,R) is very gentle. Using Theorem 2.3.11, one can in
fact prove analogous conclusions for the harmonic space of an arbitrary finitely generated
solvable group. This is the object of an ongoing project with the same collaborators; the
results are still evolving but I would like to announce here the following special case, which
could be deduced quite directly from Theorem 2.3.11.

Theorem 2.3.13 (Brum–MB–Rivas–Triestino, in preparation). Let G be a finitely gener-
ated solvable group with Repirr(G,R) 6= ∅, and (D,Ψ) be any representative of the harmonic
space of G. Then there exists Ψ-invariant closed subsets D = Dr ⊃ Dr−1 ⊃ · · · ⊃ D1 such
that

1. The set D1 consists of the fixed points of Ψ and is homeomorphic to a sphere Sd−1,
for d = dim Hom(G,R) (Proposition 2.2.15).

2. For every ρ ∈ D \D1, the limits limt→+∞Ψt(ρ) and limt→−∞Ψt(ρ) exist (and belong
to D1); they are opposite points on character sphere.

3. The convergence to the limit is uniform over compact subsets of Di+1 \ Di for every
i ≥ 1. As a consequence the restriction of Ψ to Di+1 \ Di is proper, and the quotient
(Di+1 \ Di)/Ψ is a locally compact metrisable space.

By the discussion after Theorem 2.3.11, one can deduce the following:

Corollary 2.3.14. For a finitely generated solvable group G with Repirr(G,R) 6= ∅, the
following hold:

• the semi-conjugacy relation on the space Repirr(G,R) is smooth (in the Borel sense);

• the space Repirr(G,R) is path-connected, unless it contains only two semi-conjugacy
classes corresponding to a cyclic action G→ Z and its conjugate by the reflection.

This naturally raises the following questions.

Question 2.3.15. Let (D,Ψ) be the harmonic space of a finitely generated amenable
group.

1. Is it true that all Ψ-orbits converge to a limit?

2. Is it true that the orbit-equivalence relation of the flow (D,Ψ) is smooth?

It follows from [10, Proposition 3.10] that if G is amenable, then all orbits in (D,Ψ)
must admit a fixed point in their closure; this is related to Witte-Morris’ theorem [Mor06].
The convergence to a fixed point is however a substantially more delicate property. While
a positive answer for elementary amenable group is plausible and, hopefully, reachable, a
generalisation to all amenable groups is connected the amenability problem for Thompson’s
group F (I’ll come back to this in Remark 2.3.30).
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2.3.4 Locally moving groups and Thompson’s group F

The goal of the main results in the monograph [8] is to describe the possible actions on the
real line of a class of subgroups G ≤ Homeo+(R). If G ≤ Homeo+(R), we will refer to the
inclusion of G ↪→ Homeo+(R) as the standard action of G. For a group given in this way,
and under suitable assumptions on the standard action, we will be interested in analysing
the other possible actions of G on the line, in particular to determine whether these must
be semi-conjugate to the standard action (up to the orientation).

Taking the same notation and terminology from §1.2, for a non-empty open interval
I ⊂ R we denote by GI the subgroups of G that fixes all points in R \ I. The main
assumption on G will be the following.

Definition 2.3.16. A subgroup G ≤ Homeo+(R) is locally moving if for every non-empty
open interval I, the rigid stabiliser GI acts on I without fixed points. (It then follows that
every GI acts minimally on I).

One evidence that this assumption should imply some form of rigidity is the result of M.
Rubin that if G ≤ Homeo(Z) where Z is a perfect locally compact space, and if GU y U
is minimal for U in a basis of the topology, then the space Z and the action G y Z can
be reconstructed from G [Rub89]2. Thus a locally moving group G ≤ Homeo+(R) has a
unique locally moving action up to conjugacy; this says a-priori nothing, however, on other
actions of G that might fail to have this property.

A famous example of locally moving subgroup of Homeo+(R) is Thompson’s group F
(which was defined in §1.2.2). Here the standard action is the action by PL-homeomorphisms
on the interval (0, 1) (identified with R). We also mention that F is actually the “smallest”
locally moving group acting on the line: every other such group contains a copy of F , by an
argument going back to Brin [Bri99] and largely generalised by Kim, Koberda and Lodha
[KKL19].

Thompson’s group F is one of the single most studied examples of groups acting on
the line, yet very little was known about its possible actions. Besides its standard ac-
tion, another source of examples of actions comes from the fact that the group F has an
infinite abelianisation F ab ' Z2. This implies that it admits actions on the line by trans-
lations, which correspond to homomorphisms of Z2 into the additive group (R,+) of the
reals. There are also (non-minimal) faithful actions which are semi-conjugate to actions
by translations (for instance this is always the case for actions arising from bi-invariant
orders, which exist on F and were classified by Navas and Rivas [NR10]). However it
did not appear to be known whether these are the only actions of F up to semi-conjugacy,
equivalently whether every minimal and faithful action of the group F by homeomorphisms
on the line is conjugate its standard action. The project that lead to [8] started by inves-
tigating this question. One reason to expect an affirmative answer was that the analogous
result for Thompson’s group T acting on the circle holds true, as was first observed by É.
Ghys using bounded cohomology.

Finally one of my personal motivations that lead me to investigate this type of question
was the analogy with some of the results in §1.2, in particular Corollary 1.2.3 and Theorem
1.2.4.

2The reader should be warned that the terminology “locally moving" is used in some of the papers of
M. Rubin as a synonym of what we called here “micro-supported” (§1.2). The condition that we call here
“locally moving" has various names in the litterature. Since the terminologies for these properties are not
stable even in Rubin’s papers, we decided to chose our own.
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Existence of exotic actions

Definition 2.3.17. In what follows, for a group given by some, minimal faithful action
G ≤ Homeo+(R), we will term an action ρ ∈ Repirr(G,R) exotic if it is minimal, faithful,
and not semi-conjugate to its standard action up to the orientation.

The evidence described above turned quickly out, with some initial surprise, to be com-
pletely wrong: it turns out that many classes of locally moving subgroups of Homeo+(R)
admit exotic actions. We provide various sufficient conditions for the existence of such an
action; a special case is the following.

Proposition 2.3.18 ([8]). Le G ≤ Homeo+(R) be a finitely generated group whose standard
action is minimal and conjugate to an action by piecewise linear or piecewise projective
homemomorphisms (with finitely many pieces) on some open interval X ⊆ R. Assume that
G is not metabelian. Then there exists an exotic action ρ ∈ Repirr(G,R).

Example 2.3.19 (Idea of proof in the PL case). Assume that G is a finitely generated
group of PL homeomorphisms of X = (a, b) as above, and let us sketch a construction
that produces an exotic action of G on the line (at least for many natural examples of G).
For this, denote by D−g(x), D+g(x) the right-derivative of an element g ∈ G at a point
x ∈ X, which we extend to the extreme point b in the natural way. Consider the map
c : G×X → R defined by

c(g, x) = log(D+g(x)/D−g(b)).

This map is a cocycle, i.e. it satisfies c(gh, x) = c(g, hx) + c(h, x). By construction, it has
the property that for every g ∈ G, the function c(g, ·) vanishes on a neighbourhood of b. It
follows that for g ∈ G, the point xg := sup{x : c(g, x) 6= 0} belongs to the interior of X (if
c(g, ·) is identically 0, we set xg = b). Define g � 1 if c(g, xg) > 0, and g � h if h−1g � 1.
An elementary (but somewhat tedious) verification shows that this defines a left-invariant
pre-order on G (like an order except that g � h and h � g does not imply g = h). A
pre-order descends a left-invariant order on a coset space G/H, where H is the subgroup
of elements �-equivalent to 1. By completing the ordered set (G/H,≺), one obtains an
action of G on the line. It turns out this construction yields a minimal exotic action. (This
action is actually R-focal). This construction can be compared with the Plante action of
Z o Z (Example 2.3.7). Of course, we can also reverse the orientation of X and carry out
the same construction, the resulting action is not conjugate (even up to the orientation).

In particular, the group F admits exotic actions. The previous construction has the
advantage to work for very general PL groups, but provides only two such actions. Moreover
this construction yields honest exotic actions for the group F , but it is not satisfactory for
its derived subgroup [F, F ] for which it restricts to an action which is not minimal (and
actually coincides with an action arising from a well-known bi-invariant order [NR10]).
However in the case of the group F , we provide in [8] many quite different constructions,
some which are more specific to it and do not work in the generality of all PL groups. In
particular a more delicate construction gives the following.

Theorem 2.3.20. Thompson’s group F admits uncountably many pairwise non semi-
conjugate faithful minimal actions ρ : F → Homeo+(R), which remain minimal and pair-
wise non-semiconjugate in restriction to [F, F ].
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Main results

The three results below could be considered the main results of [8]; they show that nev-
ertheless, for various classes of locally moving groups (and for Thompson’s group F in
particular), actions on the line do satisfy various rigidity phenomena. First, exotic actions
are never C1.

Theorem 2.3.21 (C1-actions of locally moving groups). Let G ≤ Homeo+(R) be a locally
moving group. Then every action ρ : G→ Diff1

+(R) is semi-conjugate, up to the orientation,
to one of the following:

(i) the standard action.

(ii) a non-faithful action.

In particular every faithful minimal action ρ : G→ Diff1
+(R) is topologically conjugate (up

to the orientation) to the standard action.

Remark 2.3.22. In the case of Thompson’s group F , the standard action is indeed topo-
logically conjugate to a C∞ action by a well-known result of É. Ghys and V. Sergiescu
[GS87]. I general it can happen that the standard action nor any non-faithful action can
are semi-conjugate to a C1 action. In that case, the result simply says that G does not
admit non-trivial C1-actions on R.
Remark 2.3.23. The non-faithful actions of F are precisely the actions by translations of
F ab ' Z2, since every non-trivial normal subgroup of F contains [F, F ]. For a general
locally moving group, denote by Gc the subgroup of G consisting of elements with compact
support (in the standard action). Then the commutator subgroup [Gc, Gc] is simple and
contained in every non-trivial normal subgroup of G [8, Proposition 4.4]. Therefore the
non-faithful actions of G are necessarily induced from the largest quotient G/[Gc, Gc]. If
G is finitely generated, then the latter is non-trivial and always has non-trivial actions on
the line. In many interesting concrete cases, the quotient G/[Gc, Gc] can be described and
its actions understood, but not much can be said about it in full generality.

Our second main result is a qualitative description of all C0 actions of a vast class
of locally moving groups. For this result we need to add a technical finite generation
assumption on some subgroups of G, stated here in a non-optimal form for simplicity.

Definition 2.3.24. We denote by C the class of all subgroups G ≤ Homeo+(R) that satisfy
the following conditions

(i) G is locally moving.

(ii) There exist x, y ∈ R such that the subgroups G(−∞,x) and G(y,+∞) are finitely gen-
erated.

The group F , and many other examples, belong to the class C. In fact, every countable
subgroup of Homeo+(R) is contained in a finitely generated group in C (with a slightly
more general formulation of (ii))

Theorem 2.3.25 (Structure theorem for C0-actions). Let G be a subgroup of Homeo+(R)
in the class C. Then every ρ ∈ Repirr(G,R) is semi-conjugate, up to the orientation, to
one of the following.

(i) A non-faithful action.
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(ii) The standard action.

(iii) A minimal R-focal action, which can be horograded by the standard action or by its
conjugate by the reflection.

The main point of this theorem is that, although the group G may admit many non-
semiconjugate exotic actions on the line, these all have a similar qualitative dynamics
and, most importantly, the standard action of G governs the behaviour of all of them at
large scale. In particular, the knowledge of how elements act in the standard action gives
information on how they can act in other actions via Proposition 2.3.10.

Among its main applications, Theorem 2.3.25 can be used to gain insight on the the
space or representations Repirr(G,R). In particular under a mild additional assumption on
G, we show that its R-focal representations cannot accumulate on the standard one, thus
obtaining the following.

Theorem 2.3.26 (C0-rigidity of the standard action). Let G be a finitely generated sub-
group of Homeo+(R) in the class C, and assume further that G contains an element
f ∈ G without fixed point in R. Then the semi-conjugacy class of the standard action
G ↪→ Homeo+(R) is open in Repirr(G,R) (namely the standard action is C0-rigid accord-
ing to Definition 2.2.10).

This result provides a new source of examples of C0-rigid actions of finitely generated
groups on the line. All previously known examples of (locally) C0-rigid actions that I
am aware of seem to be groups having finitely many actions up to semi-conjugacy, and
the many groups known to admit an isolated order (see for instance [MR18]): every such
order gives rise to a locally C0-rigid action which is, however, never minimal (and tipically
not C0-rigid). Instead, there are many more examples of C0-rigid actions on the circle
(an important one being Fuchsian actions of surface groups [Mat86,Man15]). The lack
of compactness of R is a relevant difference, as a neighbourhood of a representation ρ ∈
Repirr(G,R) only sees how ρ behaves on some compact subset of R.

The harmonic space of Thompson’s group F

Theorem 2.3.26 is proven by using Theorem 2.3.25 to analyse the qualitative behaviour of
the flow on the harmonic space (D,Ψ) of a group in the class C, which turns out to have
very restricted dynamics. Figure 2.4 provides an illustration of this for Thompson’s group
F . The goal of this paragraph is to explain that picture.

According to Theorem 2.3.25, the harmonic space D of F can be naturally partitioned
into three Ψ-invariant subsets D = A ∪ S ∪ F , where:

1. The set A consists of non-faithful actions, which in this case are actions by trans-
lations of Z2 = F ab. Thus it is homeomorphic to S1, and it is fixed by the flow
Ψ (Proposition 2.2.15). There are 4 distinguished points on it, corresponding to the
cyclic actions τ0, τ1 : F → Z determined by the logarithm (in base 2) of the derivatives
at the extreme points of [0, 1], up to sign.

2. The set S contains exactly two flow orbits S+ and S−, corresponding to the standard
action of F and its conjugate by the reflection.

3. The set F consists of actions which are R-focal, it further splits into two subsets
F = F+ t F−, namely those that are horograded by the standard action on (0, 1)
and by its conjugate by the reflection.
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Figure 2.4: The harmonic space of Thompson’s group F .

We have the following.

Theorem 2.3.27. Let (D,Ψ) be a representative of the harmonic space of Thompson’s
group F , and retain all notations above. Then

• The orbits S+,S− of the standard actions converge (in the past and the future) to the
limits shown in Figure 2.4.

• Each set F± is open and Ψ-invariant, and admits a compact transversal F0
± inter-

secting each Ψ-orbit in exactly one point. Moreover all orbits converge to the limits
shown in Figure 2.4, and the convergence is uniform on the compact transversals F0

±.

In particular F+ = F+ ∪{τ1,−τ1}, and F− = F− ∪{τ0,−τ0}, and thus the sets S+,S− are
open.

Note that the first claim, on the convergence of standard orbits S±, is straightforward;
the content of the theorem is the conclusion concerning the set F of exotic actions, which is
based on Theorem 2.3.25. This result can be used to answer various general questions about
the space of representations Repirr(F,R), by Theorem 2.2.3 and the subsequent discussion.
In particular it has the following corollaries.

Corollary 2.3.28. (i) The standard action of Thompson’s group F on R is C0-rigid
(Theorem 2.3.26 in this case).

(ii) The semi-conjugacy equivalence relation on Repirr(F,R) is smooth in the Borel sense.
In fact it admits a closed transversal; moreover if we remove from Repirr(F,R) the
semi-conjugacy classes of the four actions ±τ0,±τ1, the quotient of the resulting space
by the semi-conjugacy relation is locally compact and Polish.

(iii) The space Repirr(F,R) is path connected. However, every path that connects two
actions having different type in Theorem 2.3.25 must meet the semi-conjugacy class
of one of the four actions ±τ0,±τ1.
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While Theorem 2.3.27 gives a good qualitative picture of the dynamics of the flow
(D,Ψ), it does not describe completely the topology of the space D: the main question
left open is to understand the topology of the compact transversals F0

± (equivalently, the
quotient spaces F±/Ψ). We know little about them, beyond the fact that they are compact
and uncountable. In particular we do not know whether they have isolated points, which
is equivalent to the following question.

Question 2.3.29. Are the standard action and its conjugate by the reflection the unique
C0-rigid representations in Repirr(F,R)?

Understanding the topology of the transversals F0
± seems to require a very explicit and

fine classification of all the R-focal actions of the group F up to semi-conjugacy, that we
do not have at the moment. Although these all have very similar qualitative behavior,
and can be in principle be explicitly classified (by Corollary 2.3.28 item (ii) in Corollary
2.3.28 ), in practice there is a wild plethora of such actions (essentially because there are
a complicated amount of focal actions of F on trees and they often preserve many planar
orders). Many of the constructions we found tolerate an arborescent set of modifications,
which keep giving new non semi-conjugate actions, see [8]. At the moment we are not even
able to guess a reasonably clean recipe that would cover all the examples we are aware of.
Remark 2.3.30. By Theorem 2.3.27 the harmonic space of the group F satisfies the con-
clusion of Question 2.3.15. Thus it might seem that an affirmative answer would not
have any implications on the amenability problem for F . However we can show that if
F is amenable, then there is another amenable group, constructed from F via elementary
amenable operations, for which the first item (at least) in Question 2.3.15 fails.

Locally moving groups with very few actions

Within the class C of groups covered by Theorem 2.3.25, there are examples satisfying very
different behaviours. This is already visible among finitely generated groups of piecewise
linear homeomorphisms. Even though all such groups admit exotic actions (by Proposition
2.3.18), the amount precise nature of such actions depend subtly on the group. To illustrate
this, given an open interval X ⊂ R and λ ≥ 1 let us denote by G(λ,X) ≤ Homeo+(R)
the group of all PL homeomorphisms of X with finitely many discontinuity points for the
derivative, all in Z[ 1

λ ], that are piecewise of the form x 7→ λnx + b for some b ∈ Z[ 1
λ ].

This group belongs to the family of Bieri-Strebel groups, studied in [BS16a]. The group
G(2, (0, 1)) is Thompson’s group F . We saw above that it admits a large amount of minimal
R-focal actions. Consider instead groups of the form G(λ,R). For λ algebraic, these are
finitely generated and belong to the class C (using the results of [BS16b]). Using Theorem
2.3.25 as main tool we show the following.

Theorem 2.3.31 (PL groups with 3 faithful minimal actions). Fix λ ≥ 1 algebraic, and
set G = G(λ;R). Then every faithful minimal action ρ ∈ Repirr(G,R) is conjugate, up to
the orientation, either to the standard action, or to one of the two exotic actions obtained
through the construction in Example 2.3.19.

Modifying this example (and leaving the PL-world, so as to avoid Proposition 2.3.18)
we are able to show the following.

Theorem 2.3.32 (Locally moving groups with no exotic actions). There exist finitely
generated locally moving group G ≤ Homeo+(R) (in the class C), such that every faithful
minimal action ρ : G → Homeo+(R) is topologically conjugate to the standard one (up to
the orientation).
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2.4 Groups acting on flows and a realisation result for spaces
of actions

This section describes [7, 10]. The construction of Deroin [Der13] (or the construction of
the harmonic space from [DKNP13]) shows that every finitely generated group acting on
the line also acts on a compact space with a flow, by preserving each orbit of the flow.
Here, we shall reverse this point of view and consider family of groups defined by an action
on a class of flows, namely suspension flows of subshifts. In particular we use this idea to
prove a realisation result for harmonic spaces of a groups acting on the line, showing that
every flow in a suitable class arises as the harmonic space (D,Ψ) of some finitely generated
group, up to flow equivalence. This produces examples of finitely generated groups whose
space of actions Repirr(G,R) has various prescribed properties.

2.4.1 The group construction and its first properties

The main input for our construction is a pair (X,ϕ) consisting of a totally disconnected,
compact metrisable space and a homeomorphism ϕ of X. The suspension (or mapping
torus) of (X,ϕ) is the space Y ϕ = X × R/(x, t) ' (ϕ(x), t − 1), this space is locally
homeomorphic to a totally disconnected set × interval, and is naturally endowed with a
system of local coordinates. Indeed, for every clopen subset C ⊂ X and every interval
I of length |I| ≤ 1, the restriction of the projection maps homeomorphically C × I to a
subset YC,I , that we shall call a chart. Note that changes of charts are locally of the form
ϕn × (t 7→ t − n). The space Y ϕ is naturally endowed with a flow Φ: R × Y ϕ → Y ϕ, the
suspension flow of ϕ.

The definition below also depends on the choice of a pseudogroup G of homemorphisms
between intervals. Here this simply means that G is a collection of homeomorphisms
f : I → J between (open) intervals, which is closed under composition (whenever defined),
inversion, and restriction to an open sub-interval. We further assume that G contains all
integer translations x 7→ x+ n (in restriction to any open interval).

Definition 2.4.1. Let (X,ϕ) and G be as above. We denote by TG(ϕ) the group of all
homeomorphisms g of Y ϕ such that every y ∈ Y ϕ is contained in some chart where g
coincides (in chart coordinates) with a transformation of the form ϕn × f , for some n ∈ Z
and some f ∈ G.

The fact that TG(ϕ) is a group follows easily from the form of the changes of charts,
together with the assumption that G contains all integer translations. Since the group
TG(ϕ) preserves orbits of the flow Φ, every non-periodic orbit provides an action of it on
the real line, leading to the following.

Proposition 2.4.2. If the set of points with infinite ϕ-orbit is dense in X, then the group
TG(ϕ) is left-orderable.

In [12], we consider only the case where G is the pseudogroup of all PL dyadic homeo-
morphisms, namely all maps f : I → J between open intervals which are piecewise linear,
with a discrete set of discontinuity point for the derivative all being in Z[1

2 ] ∩ I, and such
that the restriction of f on every piece is of the form x 7→ 2nx + b for some n ∈ Z and
b ∈ Z[1

2 ]. For this choice of G, the group TG(ϕ) is denoted simply T(ϕ). The following
results are proven in [12].

Theorem 2.4.3. If the system (X,ϕ) is minimal, then the group T(ϕ) is simple.
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Recall that subshift is a system (X,ϕ) given by a closed shift-invariant subset X ⊂
AZ, where A is a finite alphabet, and the restriction ϕ of the shift. When X is totally
disconnected, a system (X,ϕ) is conjugate to a subshift if and only if it is expansive.

Theorem 2.4.4. If (X,ϕ) is conjugate to a subshift, then T(ϕ) is finitely generated.

These statements are largely inspired by the analogous results of H. Matui [Mat06]
for the commutator subgroup of the topological full group of ϕ (they are in fact even a
bit simpler to prove). Our initial motivation in [7] was to provide a conceptualisation of
the construction of J. Hyde and Y. Lodha of the first examples of finitely generated simple
groups of homeomorphisms of the real line [HL19]. Their original construction was based on
defining carefully some subgroups of Homeo+(R) given by some explicit set of generators,
which act by PL dyadic homeomorphisms with infinitely many pieces in a quasi-periodic
manner. These groups are easily seen to embed into T(ϕ) for some special choice of (X,ϕ).
The main point is that the more intrinsic definition of T(ϕ), and its action on the compact
space Y ϕ, allows to prove simplicity by a very short and standard argument for micro-
supported groups of homeomorphisms. By analysing the action on the real line directly,
the argument is necessarily more tedious and involved (a finitely generated simple group
can’t have a micro-supported action on a non-compact space).

We also established the following [7].

Theorem 2.4.5. If (X,ϕ) is minimal, then every action of the group T(ϕ) on the circle
by homeomorphisms has a fixed point.

This provided the first example of finitely generated subgroups of Homeo+(R) with this
property. The existence of such examples helps clarifying the difference between groups
acting on the line and on the circle and the limitations of some methods to study them,
answering a question of B. Deroin, A. Navas and C. Rivas [DNR16, §3.5] (discussed more
in details in [Nav18, Question 4]).

Several additional properties of the groups T(ϕ) are proven in [7], that I shall not
discuss here.

Finally we mention that even though the only case considered in [7] is for G consisting
of PL-dyadic maps, the proofs the previous results are robust and only depend on some
formal properties of groups of PL-dyadic maps (fragmentation property, cutting and pasting
conditions, etc.). Although we did not try to write an optimal statement in terms of an
abstract G, these proofs can be adapted to other choices of G. A different choice will be
important in the next subsection.

2.4.2 A realisation result for harmonic spaces

In the previous sections we have seen a few examples of groups whose harmonic space (D,Ψ)
can be understood. In all these examples it has very restricted dynamical properties, in
the sense that the flow Ψ is not cahotic at all (all orbits converge to a limit, there are nice
transversals to the orbits, etc.). In view of Theorem 2.2.3, this corresponds to the fact
that the semi-conjugacy equivalence relation on Repirr(G,R) is particularly well-behaved.
The goal of [10] is to use the groups construction discussed in the previous section to
show that the suspension flow of any subshift, satisfying some mild assumptions, arises the
harmonic space (D,Ψ) of some explicit finitely generated group (up to flow equivalence).
Before explaining the details of this construction let me state this realisation result in an
intrinsic (but non-explicit) form. We say that a flow (Y,Ψ) is freely reversible if there exists
a continuous involution σ̂ : Y → Y which establishes a flow equivalence between (Y,Φ)
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and its time-reverse (Y,Φ−1). The harmonic space (D,Ψ) of a finitely generated group
always has this property: the involution is induced by conjugation of representations in
Repirr(G,R) by the reflection x 7→ −x, and it commutes with the group action.

Theorem 2.4.6 (Realisation result for harmonic spaces [10]). Let (Y,Φ) be an expansive
flow without fixed points on a compact space of covering dimension 1. Suppose that (Y,Φ)
is freely reversible and topologically free. Then there exists a finitely generated group G
whose harmonic space is flow-equivalent to (Y,Φ).

This provides many explicit examples of harmonic spaces which have truly chaotic flows.
Let me now discuss the group construction used to prove Theorem 2.4.6. The groups

TG(ϕ) are natural candidates to prove such a result, indeed it is natural to wonder whether
their harmonic space identifies with (Y ϕ,Φ), the suspension flow of (X,ϕ); this essentially
amounts to show that all actions of T(ϕ) on the line arise from one Φ-orbit (a question
we asked already in [7], with this application in mind). There is however an obvious
obstruction for that statement to be literally true, namely the reversibility of the harmonic
space. In general the harmonic space of TG(ϕ) must contain at disjoint a copy (Y ϕ,Φ−1)
of the time reverse of (Y ϕ,Φ), which encodes actions with the opposite orientations. So, at
best, the family TG(ϕ) would allow to realise the disjoint union of (Y ϕ,Φ) and (Y ϕ,Φ−1)
as the harmonic space of some group. This would also be interesting but is too restrictive
for some of the applications we are looking for (for instance a flow of this type is never
minimal).

To take this into account, instead of starting with a subshift (X,ϕ), we take as input a
triple (X,ϕ, σ), where (X,ϕ) is a subshift and σ is a fixed point-free involution of X that
conjugates ϕ to ϕ−1. The map σ naturally induces a map σ̂ : Y ϕ → Y ϕ on the suspension
space, which conjugates the flow Φ to its inverse; this map has no fixed points provided
σ does not preserve any ϕ-orbit. We shall call such a triple (X,ϕ, σ) a freely reversible
subshift.

Definition 2.4.7. Assume that (X,ϕ, σ) is a freely reversible susbhift. We denote by
TG(ϕ, σ) the centraliser of σ̂ in TG(ϕ).

For instance, choosing G to be the pseudogroup of PL-dyadic transformations, we obtain
a family of groups denoted T(ϕ, σ). This family was defined in this terms in [6] (for an
application to high transitivity), and the groups originally defined by Hyde and Lodha
[HL19] turn out to be particular instances of this family (by an alternative description
that they gave later with Navas and Rivas [HLNR21].) However, in [10] we also choose a
different pseudogroup G. This is needed for technical reasons in our proof, coming from
the fact that subgroups of PL([0, 1]) always admit non-trivial homomorphisms to (R,+),
which create difficulties in our attempts to identify the harmonic space with this choice.
To get additional rigidity, the idea is to consider a larger pseudogroup D of maps which
are still piecewise linear but have a non-discrete set of breakpoints, with some control on
their accumulation points. The precise definition is the following.

Definition 2.4.8. Let D be the pseudogroup consisting of all maps f : I → J such that
there exists a finite set Σ ⊂ I such that the following are satisfied

1. Σ ⊂ I ∩ Z[1
2 ] and f(Σ) ⊂ J ∩ Z[1

2 ].

2. Every x ∈ I \ Σ has a neighourhood U such that f |U is PL-dyadic.

3. For every x ∈ Σ we have f(x+ 2t)− f(x) = 2(f(x+ t)− f(x)) for every sufficiently
small t (that is, f locally commutes with the doubling map).
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The set of all self-homeomorphisms of [0, 1] in D is a group, denoted F . This group is
a relative of Thompson’s group F ; it is still finitely generated, and the important difference
is that it is perfect. With this choice we manage to prove the following.

Theorem 2.4.9 (Explicit version of Theorem 2.4.6). Let (X,ϕ, σ) be a freely reversible
subshift, and assume that ϕ does not have isolated periodic points, and that σ does not
preserve any ϕ-orbit. Let (Y,Φ) be the suspension flow of (X,ϕ).

Then the group TD(ϕ, σ) is finitely generated, and its harmonic space identifies with
(Y,Φ) (up to equivariant flow equivalence).

This result implies Theorem 2.4.6, using a well-known characterisation of suspension
flows of subshifts due to Bowen an Walters [BW72].

By choosing (X,ϕ, σ) appropriately, Theorem 2.4.9 produces examples of groups satis-
fying various new phenomena at the level of the space of representations Repirr(G,R). In
fact, for the groups G = T(ϕ, σ) we also prove that the retraction r : Repirr(G,R) → Y
from Theorem 2.2.3 is “essentially” an open map (at least, one can pretend so in the dis-
cussion below [10, Proposition 6.1]). This has applications related to the study of rigidity
and flexibility of representations, as it implies that the dynamics of the flow (Y,Φ) carries
complete information on the accumulation points of semi-conjugacy classes in Repirr(G,R).
In particular, for the groups T(ϕ, σ) we have a complete control on which representations
are (locally) C0-rigid: both properties are equivalent in this case, and such representations
correspond to the orbits of (X,ϕ) consisting of isolated points [10, Proposition 6.3]. In the
opposite direction, choosing the susbshift (X,ϕ) to be minimal, we obtain following.

Corollary 2.4.10. Let G = T(ϕ, σ), where (X,ϕ, σ) is as in Theorem 2.4.9. If (X,ϕ) is
minimal, then any semi-conjugacy class is dense in Repirr(G;R).

The density of all semi-conjugacy classes in Repirr(G,R) can be seen as an extreme
flexibility property, namely it means that every representation ρ ∈ Repirr(G;R) admits
arbitrarily small perturbations which are semi-conjugate to any other representation in
Repirr(G;R). There were no known examples of groups with this property. Their existence
can be compared with a question of Navas, asking whether there exists a finitely generated
left-orderable group acting minimally on its space of left orders, see [Nav18, Question 6].
The conclusion in Corollary 2.4.10 is an analogous property at the level of actions on
the line; however there is no formal connection: the groups constructed here do not act
minimally on their space of left-orders, and conversely this property does not seem to imply
a priori the conclusion of Corollary 2.4.10 (because not all representations in Repirr(G;R)
on the line are dynamical realisations of orders).

As another example of application, we obtain examples of finitely generated groups that
admit many non semi-conjugate actions on R, yet any two generic actions in Repirr(G,R)
are semi-conjugate up to the orientation, in the following sense.

Corollary 2.4.11 (Groups with a generic representation). There exist finitely generated
groups G such that Repirr(G;R) contains infinitely (countably or uncountably) many dis-
tinct semi-conjugacy classes, and there is ρ ∈ Repirr(G;R) such that the semi-conjugacy
classes of ρ and of its conjugate by the reflection form a dense open set.

Remark 2.4.12. Since we required semi-conjugacy to be orientation-preserving, it is not
possible for a group G to have a representation ρ ∈ Repirr(G;R) with an open dense (or
even co-meager) semi-conjugacy class, as its conjugate by the reflection should have the
same property.
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Another application concerns the structure of the (path-)connected components of the
space Repirr(G,R). Recall from §2.2.2 that, following [MW17], we say that an action
ρ ∈ Repirr(G;R) is path-rigid if its path-component in Repirr(G,R) coincides with its semi-
conjugacy class. Theorem 2.4.9 is a source of groups with a rather extreme behaviour with
regard to this notion.

Corollary 2.4.13 (Path-rigidity of all representations). Let G = T(ϕ, σ), where (X,ϕ, σ)
is as in Theorem 2.4.9. Then the path-components of Repirr(G;R) coincide with the semi-
conjugacy classes.

Choosing (X,ϕ) to be minimal and combining with Corollary 2.4.10, there are finitely
generated groups G such that all representations in Repirr(G;R) are path-rigid, yet they all
admit arbitrarily small perturbations semi-conjugate to any other representation; moreover
the space Repirr(G;R) is connected but not path-connected, and nowhere locally connected.
In this example there is a dramatic difference between between path-continuous deforma-
tions of representations and more general small perturbations (and similarly between path-
connected and connected components). There is no reason to expect otherwise a-priori,
but when studying other spaces of actions on one manifolds, the difference between the
two can be subtle and difficult to understand (see for instance Mann and Wolff [MW17],
or, in higher regularity, Bonatti and Eynard [BEB16], Eynard and Navas [EBN21]).

It is an interesting question to find other constructions of groups acting on spaces with
flows, and use them to prove a more general realisation result as Theorem 2.4.6 to flows
on spaces of higher topological dimension.

Question 2.4.14. Which compact spaces endowed with a flow (Y,Φ) can be realised as
the harmonic space of a finitely generated group (up to flow equivalence)?

Some cases of this question are part of the project of my current Ph.D. student M.
Gilabert.
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Chapter 3

Liouville property via conformal
dimension

3.1 Introduction
This part presents the recent paper [11] in collaboration with V. Nekrashevych and T.
Zheng. The general context of this work is the study of amenability of groups and the
Liouville property for random walk (which was also the main topic of my Ph.D thesis).

Recall that a group G is amenable if it admits an invariant mean (that is a finitely
additive probability measure, defined on all subsets of G). The choice of a probability
measure µ on a group G determines a random walk. On says that the random walk has
the Liouville property if its Poisson boundary is trivial, that is, every bounded µ-harmonic
function on G is constant on the subgroup generated by the support of µ. When µ is
generating, the Liouville property implies amenability of G in a very constructive way,
namely the Cesaro averages of the convolutions µ∗n accumulate on an invariant mean.
Conversely on every amenable group there exists some generating, symmetric measure
generating a Liouville random walk, by a result of Kaimanovich–Vershik and Rosenblatt
[KV83,Ros81]; however such a measure cannot in general be chosen to be finitely supported,
or even to have finite entropy (Kaimanovich and Vershik [KV83], Erschler [Ers04]).

Many groups either belong to the class of elementary amenable groups (obtained from
finite and abelian groups through group theoretic operations which preserve amenability) or
are non-amenable for the much stronger reason that they admit non-abelian free subgroups.
For a group which does not belong to any of these two classes, the amenability question
might be challenging and remains an open problem in many cases. Many examples for
which the question is non-trivial (and solved or unsolved) arise as groups of dynamical
origin.

A prototipical example of this situation is the class of contracting self-similar groups.
These are groups G defined through an action on some rooted tree defined in by recursive
rules. A famous example of such a group is the Grigorchuk group, which is the first
example of non-elementary amenable group [Gri84] (for the much stronger reason that
it has intermediate growth). From the early 2000s, the amenability of various classes of
self-similar groups has been shown, in some cases by establishing the Liouville property for
some suitably constructed, finitely supported random, starting with the work of Bartholdi
and Virág [BV05] (an account of these results can be found in § 3.4). In fact, for a long
time, this class (or close relatives) has been the only source of examples of non-elementary
amenable groups.
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The most studied class of self-similar groups are contracting self-similar groups. These
arise in connection with dynamics, as iterated monodromy groups of spaces with an ex-
panding (branched) self-covering p : X → X . The iterated monodromy group is, roughly
speaking, the faithful image of the fundamental group under its monodromy action asso-
ciated to all iterates of p (see §3.2.2). An important class of examples of expanding self
coverings are post-critically finite rational functions f : P1(C)→ P1(C), over the Riemann
sphere (which are expanding in restriction to their Julia set). Conversely to every con-
tracting self-similar group G, one can construct a space with an expanding self-covering
p : JG → JG, called its limit dynamical system, and these constructions are dual to each
other (in the case of the iterated monodromy group of a post-critically finite rational
function f , the space JG is homeomorphic to the Julia set of f). The study of iterated
monodromy groups has been initiated in the early 2000s by V. Nekrashevych (motivated
by a constructions of R. Pink), and has been developed since them by him and several
other authors, see his books [Nek05,Nek22] for an account on the theory.

It remains a widely open question whether all contracting self-similar groups (equiva-
lently, iterated monodromy groups of expanding self-coverings) are amenable. In [11] we
provide new progress on this question. Our main result, Theorem 3.3.4 below, establishes
the Liouville property (and hence amenability) for a class of contracting groups. That
result applies to all classes of contracting groups whose amenability had previously been
established, and to many new ones. An application is the following.

Theorem 3.1.1. Let f ∈ C(z) be any post-critically finite rational function whose Julia
set is not the whole sphere, and let G be its iterated monodromy group. Then for every
probability measure µ on G with finite second moment, the µ-random walk has the Liouville
property. In particular, G is amenable.

The novelty in our approach is the use of conformal dimension, a fundamental invariant
of metric spaces introduced by P. Pansu in the late 80s (see, for example [Pan89]), which
is now widely studied in geometric group theory and dynamical systems. See [MT10] for
a survey of its properties and applications. The conformal (and related Ahlfors-regular
conformal) dimension are invariants of quasi-symmetries between metric spaces. Since
quasi-isometries of hyperbolic spaces correspond to quasi-symmetries of their boundaries,
the conformal dimension is a natural invariant of hyperbolic groups and their bound-
aries, and was originally exploited in this setting. More generally, considering metrics up
to quasi-symmetry is specially useful and natural for self-similar metric spaces, and an-
other natural class of examples are precisely metric spaces together with an expanding
(branched) covering map p : J → J . Their quasi-conformal geometry is the subject of the
works [HP09,HP11,HP12] by P. Haïssinsky and K. Pilgrim, who also suggested the poten-
tial importance of the conformal dimension to the study of contracting self-similar groups.
Theorem 3.3.4 roughly speaking says that if p : J → J is an expanding self-covering and if
the Ahlfors-regular conformal dimension of J is less than 2, then the iterated monodromy
group is Liouville. This is essentially the first result that connects the two aspects of the
theory of self-similar groups alluded above, by relating directly the properties of an ex-
panding self-covering (for instance, the Hausdorff dimension of the Julia set of a rational
function) to the amenability of its iterated monodromy group.
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3.2 Definitions

3.2.1 Contracting self-similar groups

For d ≥ 1, consider the finite alphabet X = {1, . . . , d}. The set X∗ of finite words in X∗
is naturally a rooted tree, where each word w is connected by an edge to wx for every
x ∈ X. We denote by Aut(X∗) the group of automorphisms of this rooted tree. Every
such automorphism fixes the root (corresponding to the empty word ∅). The following
definition provides a way to define group actions on X∗ by recursive rules.

Definition 3.2.1. Given a group G, a wreath recursion is a homomorphism

r : G→ Sym(X) nGX, g 7→ σg(g|1, · · · , g|d).

Two wreath recursions r1, r2 : G → Sym(X) n GX are equivalent if r1 is equal to r2
postcomposed by an inner automorphism of the wreath product Sym(X) nGX.

A wreath recursion gives rise to a natural action G→ Aut(X∗), defined recursively by

g(xw) = σg(x)g|x(w), x ∈ X, w ∈ X∗.

Equivalent wreath recursions yield conjugate actions in Aut(X∗). More explicitly the action
of G on each level Xn can be determined by iterating the wreath recursion, by applying
it again in all coordinates of GX. This leads to a sequence of homomorphisms G →
Sym(Xn) nGXn , g 7→ (σ(n)

g , (g|v)v∈Xn), and the action of G satisfies

g(vw) = σ(n)
g (v)g|v(w), ∀v ∈ Xn, w ∈ X∗.

The element g|v is called the section of g at v.

Definition 3.2.2. A (faithful) self similar group is a group G endowed with a wreath
recursion r : G→ Sym(X) nGX such that the associated action of G on X∗ is faithful.

Two self similar groups with wreath recursions ri : Gi → Sym(Xi)nGXi
i are equivalent if

there exists an isomorphism Φ: G1 → G2 and a bijection ψ : X1 → X2 such that the wreath
recursions become equivalent after identifying G1 to G2 via Φ and X1 and X2 via ψ.

In practice, to define a self-similar group, it is enough to define the wreath recursion
at the level of a free group Fn, by specifying the image of the generators, and then let G
be the quotient of the induced action of Fn on X∗. For example, the Grigorchuk group G
is generated by the elements a, b, c, d with wreath recursion over the alphabet X = {0, 1}

a = (01)(e, e), b = (01)(c, e), d = (01)(d, e), d = e(b, e).

Definition 3.2.3. A self-similar group (G, r) is contracting if there exists a finite set
N ⊂ G such that for every g ∈ G, there exists n ≥ 1 such that the section g|v ∈ N for all
words v ∈ Xn. The smallest set N is called the nucleus of G.

The condition that G is contracting does not depend on the choice of the wreath
recursion up to equivalence. (Its nucleus, however, might depend on it.)

To clarify the terminology, when G ≤ Aut(X∗) is finitely generated and self-similar,
and `(·) is a word metric on G, the contracting condition is equivalent to the existence of
constants C > 0, λ ∈ (0, 1) and n0 such that

`(g|v) ≤ λ`(g) + C ∀g ∈ G, v ∈ Xn0 . (3.1)

53



3.2.2 Iterated monodromy groups and limit spaces

The presentation here is close to [Nek11]. Let M be a path connected and locally path
connected topological space. A partial self covering ofM is a finite degree covering map

p : M1 →M,

where M1 ⊂ M is a subset. Iterating a partial self-covering yields a sequence of partial
self coverings pn : Mn →M, whereMn ⊂M1 is the set of points where pn is defined.
Example 3.2.4. A complex rational function f : P1(C) → P1(C) is post-critically finite if
the forward orbit of every critical point of f (namely a point z where f is not a local
biholomorphism) is finite. The set Pf = {fn(z) : n ≥ 1, z critical point} is then called
the post-critical set of f . Any post-critically finite rational function defines a partial
self-covering f : M1 → M is a partial self-covering, with M = P1(C) \ Pf and M∞ =
P1(C) \ f−1(Pf ).

Fix a base point t ∈ M. The disjoint union T = tn≥0p
−n(t) is naturally a rooted tree

with root t, where each point x ∈ T is connected by an edge to p(x). It is called the tree
of preimages of p. The natural monodromy action of the fundamental group π1(M, t) on
each fiber p−n(t) defines an action by automorphisms on the tree T ,

Definition 3.2.5. The quotient of π1(M, t) by the kernel of its action on the tree of
preimages is called the iterated monodromy group of the partial self-covering, and is denoted
IMG(p).

Iterated monodromy groups are naturally self-similar groups. In fact it is possible to
write en explicit wreath recursion which generates the action of π1(M, t) on the tree of
preimages. To this end, fix an alphabet X = {1, . . . , d} of cardinality equal to the degree
d of the covering. Fix a bijection ι : X → p−1(t), and for each x ∈ X, choose a path `x in
M connecting t to ι(x). Since π1(M, t) acts on p−1(t), for every γ ∈ π1(M, t) there exists
a permutation σγ ∈ Sym(X) such that γ · ι(x) = ι(σγ(x)). For a path γ ∈ π1(M, t), let γx
be a lift of γ starting at ι(x) (and ending at ι(σγ(x))). Then the following formula defines
a wreath recursion on π1(M, t):

π1(M, t)→ Sym(X) n π1(M, t)X, γ 7→ σγ(`−1
σγ(1γ1`1, . . . , `

−1
σγ(d)γd`d).

It is possible to identify the tree X∗with T equivariantly, so that the image of the associated
action coincides with the iterated monodromy group. A change in any of the choices made
(the basepoint t, the identification of p−1(t) with a finite alphabet X, and the paths `x)
yields an equivalent self-similar group.

Nekrashevych gave in [Nek05] a definition of an expanding partial self-covering p : M1 →
M, and showed that the iterated monodromy group p of an expanding self-covering is con-
tracting. Roughly speaking p is expanding if it locally expands a length structure onM1
(namely a distance with respect to which it is possible to measure the length of curves;
for instance a Riemannian metric in the case of a manifold). The precise definition is a
bit technical and I shall not repeat it here, but I shall just mention that as a relevant
special case, the iterated monodromy group of every post-critically finite rational function
f ∈ C(z) is contracting (the fact that f is expanding follows from Pick’s theorem).

A converse construction allows to associate to every contracting group a compact space
together with an expanding map.
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Definition 3.2.6. The limit space JG of a contracting self-similar group (G, r) is the
quotient of the set of left-infinite sequences X−ω := {· · ·x2x1, xi ∈ X} by the equivalence
relation that identifies · · ·x2x1 and · · · y2y1 if there exists a sequence (gn) taking values in
a finite subset of G such that gn(xn · · ·x1) = yn · · · y1 for every n in N.

The shift · · ·x2x1 7→ · · ·x3x2 passes to the quotient to a continuous map s : JG → JG,
called the limit dynamical system of G.

Changing the wreath recursion to an equivalent one yields an homeomorphic space JG
and a topologically conjugate limit dynamical system.

One way to think about the space JG is to interpret it in terms of Schreier graphs.
Namely, if we fix a finite generating set S of G, we may consider the sequence of Γ(G,Xn)
of Schreier graphs of the action of G on the levels of the tree. Then two sequences · · ·x2x1
and · · · y2y1, define the same point in JG if and only if the sequences xn · · ·x1 and yn · · · y1
stay at uniformly bounded distance in Γ(G,Xn). We warn however that the graphs Γ(G,Xn)
do not converge to JG in a metric sense in general.

Another result of Nekrashevych [Nek05] asserts that when G = IMG(f) is the iterated
monodromy group of a postcritically finite rational map f ∈ C(z), then JG is homeomor-
phic to the Julia set of f , and the homeomorphism conjugates the limit dynamical system
(JG, s) to the restriction of f to it. It follows that IMG(f) is a complete invariant of the
topological dynamics of f on its Julia set.

In general, a contracting group G can essentially be recovered as the iterated mon-
odromy group of its limit dynamical system s : JG → JG. However this is not quite
litteraly true; to make this statement true one needs to endow JG with an additional
structure of orbispace and develop the whole theory in this setting, see [Nek22]. Modulo
this point, the class of contracting self-similar groups and iterated monodromy groups of
expanding partial self-coverings coincide.

3.3 Conformal dimension and the main result
Let G → Sym(X) n GX be a contracting self-similar group. For v ∈ Xn, we denote by
Tv ⊂ JG the image of X−ωv (namely the set of sequences of the form · · ·xn+2xn+1v). Sets
of the form Tv are called the (nth-levels) tiles of the limit space JG. For ξ ∈ JG and n ≥ 1,
let us denote T +(ξ, n) the union of all level n tiles Tv such that Tv ∩ Tw 6= ∅ for some nth
level tile Tw containing ξ.

Although we did not specify any metric on JG yet, the set T +(ξ, n) should be thought
as analogues of balls. It is natural to consider the class of metrics for which they are
“approximately round”, in the following sense.

Definition 3.3.1. A metric d on JG is quasiconformal if it induces the topology of JG
and there exists C > 0 such that for every ξ ∈ JG and every n there exists r > 0 such that

B(ξ, r) ⊂ T +(ξ, n) ⊂ B(ξ, Cr),

where B(ξ, r) denotes the ball with respect to d.

A distance d on a space Y is Ahlfors-regular if there exists a Borel measure µ on Y and
constants α > 0 and C > 0 such that C−1Rα ≤ µ(B(ξ,R)) ≤ CRα for every ξ ∈ Y and
R > 0. The exponent α is equal to the Hausdorff dimension of d.

Definition 3.3.2. For a contracting self-similar group G, the Ahlfors-regular conformal
dimension of the limit space JG is the infimum of the Hausdorff dimension of the Ahlfors-
regular quasi-conformal metrics on JG, and is denoted ARdim(JG).
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Remark 3.3.3. Usually the (Ahlfors-regular) conformal dimension of a metric space (Y, d) is
defined as the infimum of the Hausdorff dimensions of the (Ahlfors-regular) metrics which
are quasi-symmetric to d, see e.g. [MT10]. A typical situation is when Y is the boundary
of a Gromov hyperbolic space, and d is a visual metric. In fact, the limit space JG of a
contracting group can be identified with the Gromov boundary of a Gromov-hyperbolic
graph, called the self-similarity graph whose vertex set is X∗ and where two vertices v, w
are connected by an edge in one of the following situations: w = xv for some x ∈ X (vertical
edges) and w = h(v) for some h in the nucleus (horizontal edges). One can show that any
metric quasi-symmetric to a visual metric on JG is quasi-conformal in the sense of Definition
3.3.1. Conversely under a mild assumption on G (that it is self-replicating), it turns out
that the two notions coincide (in particular this is true for the iterated monodromy group
of a post-critically finite rational function). In that case Definition 3.3.2 coincides with the
more standard definition. We do not know whether this is true for all contracting groups,
for which our definition might give a smaller number, but it is the more natural definition
for our main result.

We are finally ready to state the main result from [11].
Theorem 3.3.4 ([11]). Let G be a finitely generated contracting self-similar group such
that ARdim(JG) < 2. Then for every symmetric probability measure µ on G with a finite
α−moment for some α > ARdim(JG), the µ-random walk is Liouville. In particular every
such group is amenable.

If G is the iterated monodromy group of a post-critically finite rational function f ∈
C(z), results of P. Haïssinsky and K. Pilgrim [HP09] imply that the natural homeomor-
phisms between the limit space JG and the Julia set Jf is a quasi-symmetry, with respect
to the visual metric on JG and the spherical metric on Jf . Thus ARdim(JG) is bounded
above by the Hausdorff dimension of Jf . If Jf ( P1(C), its Hausdorff dimension is always
strictly less than 2 by a result of McMullen [McM00]. Thus Theorem 3.3.4 implies Theorem
3.1.1.

Let me give a rough idea of how the proof of Theorem 3.3.4 proceeds (at least for finitely
supported measures). As often in the realm of groups of dynamical origin, to understand
the random walk on G, one proceeds in two steps by first obtaining a very good control
for the random walk induced on the Schreier graphs of some natural non-free action, and
then trying to find some argument to lift the conclusion to G. Here the Schreier graphs are
the finite Schreier graphs Γ(G,Xn) on the finite levels of the tree. These can be thought
as the adjacency graphs of the sequence of partitions of the limit space JG into tiles. The
assumption that ARdim(JG) < 2 delivers us a metric d on JG with Hausdorff dimension
α < 2. The fact that Lipschitz functions on JG separate points can be used to produce
functions on these graphs. Using this way to produce functions, one can estimate the
`2-capacity (or effective conductance) between large subsets of Γ(G,Xn) that approximate
disjoint regions on the limit space JG, and show that it must tend to 0 as n → ∞. This
is reminiscent of connections between conformal dimension and potential theory due to
Carrasco [CP13] and Kigami [Kig20]. This implies that the random walk on Γ(G,Xn)
must take a long time to travel back and forth between regions that approximate disjoint
parts of JG. This is the first step. The second step consists in showing that if the random
walk in G goes far, then the induced random walk on Γ(G,Xn) must constantly go back
and forth between disjoint regions of JG. This uses crucially the theory of contracting
models developed by Nekrashevych [Nek22], which allows to see JG as an inverse limit of
finite graphs in a metric sense (the graphs Γ(G,Xn) are not suited to this purpose). The
concluding argument uses the entropy criterion from [KV83]
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3.3.1 `p-contraction and moment conditions

The possibility of proving Theorem 3.3.4 for measures with a moment condition is based
on the study of another invariant of contracting groups, namely critical exponent. Assume
that G is a finitely generated contracting group, with a fixed word-metric `(·). Recall that
the condition that G is contracting can be characterised by the contraction of the length of
sections of elements as in (3.1). As a natural generalisation of this condition, for p ∈ (0,∞],
we say that a contracting group satisfies `p-contraction if there exists some η ∈ (0, 1) and
n > 0 and C > 0 such that every g ∈ G satisfies

`(g) ≤ η(
∑
v∈Xn

`(g|v)p)1/p + C.

Then `∞-contraction is equivalent to the standard contraction (3.1). Another relevant
special case is `1-contraction (usually called sum contraction), which was observed by
Grigorchuk to imply subexponential growth of G (he used this to show that his groups
have intermediate growth [Gri84])

One can show that for every contracting group, the set of p such that G satisfies `p
contraction is an interval (pc(G),∞], for some pc(G) <∞.

Definition 3.3.5 ([Nek22]). For a contracting self-similar group G, the infimum of the
values of p such that G satisfies `p-contraction is called the critical exponent of G, and is
denoted pc(G).

Finally for a finitely generated group G, let us denote by CrLiouv(G) the infimum of α
such that the µ-random walk is Liouville for all symmetric measure µ on G with a finite
α-moment. Then the main results in [11] can be summarized as the following chain of
inequalities (which implies Theorem 3.3.4).

Theorem 3.3.6. Let G be a finitely generated contracting group such that ARdim(JG) < 2.
Then

CrLiouv(G) ≤ pc(G) ≤ ARdim(JG).

The inequality CrLiouv(G) ≤ pc(G) is sharp in all the (rather limited) cases where
both quantities are known. In particular it is sharp for the Grigorchuk group, for which
CrLiouv(G) has been computed by Erschler and Zheng [EZ20] (a matching upper bound for
pc(G) follows from older work of Bartholdi [Bar98]).

The inequality pc(G) ≤ ARdim(JG) does not require the assumption that ARdim(JG) <
2, and was known to V. Nekrashevych before our collaboration. This inequality lead him
to conjecture that ARdim(JG) < 2 should imply the Liouville property for G (at least for
finitely supported symmetric measures), a conjecture that he stated during a conference
at IHP in spring 2022, where the collaboration with T. Zheng and myself started. His
conjecture was partly inspired by a result from my Ph.D thesis [16], that the topological
full group of a subshift with strictly subquadratic complexity function is Liouville for sym-
metric finitely supported measures. The complexity of a subshift X ⊂ AZ is the function
pX(n) that measures the number of finite words of length n that appear as subwords of
words in X. The number pc(G) can in fact be interpreted as the exponent of an analogue
of the complexity function for the G-action on the tree. Eventually our proof of Theorem
3.3.4 turned out to be quite different. The role of pc(G) turned out to be not so central in
the case of finitely supported measures, but crucial to extend the result to measures with
a moment condition to control the long jumps of the random walk.
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3.4 Examples and comparison with previous results
An historically important example is the iterated monodromy group of the polynomial
z2−1, also known as the basilica group. The group IMG(z2−1) is generated by two elements
a, b given by the following explicit wreath recursion on the binary alphabet X = {0, 1}.

a = ((01), (b, e)), b = (e, (a, e)). (3.2)

In fact Grigorchuk and Żuk defined this group (in terms of its wreath recursion) even be-
fore the definition of iterated monodromy group was formulated, and asked if it is amenable
[GŻ02]. Bartholdi and Virág answered this in the affirmative in [BV05]; their argument
(as streamlined by Kaimanovich [Kai05]) consists in showing the Liouville property for the
simple random walk associated to the uniform measure µ on the standard generating set
above. Their proof relies on this specific choice of a random walk via the fact that it is
self-similar in the sense of [Kai05], namely after iterating the wreath recursion its sections
follow the same law along some sequence of stopping times. This is a rather restrictive
condition which depends on the form of the wreath recursion, and most self-similar groups
do not admit a self-similar random walk.

The method of Bartholdi and Virág was generalised to show amenability of more classes
of self-similar groups, defined in terms of a slow growth condition of the wreath recursion
G→ Sym(X) nGX. Consider a self-similar group G which is finite state, namely for every
g ∈ G, the set of sections {g|v, v ∈ X∗} is a finite subset of G (this is clearly true if G is
contracting). For g ∈ G, the activity function of g is the function αg(n) that counts the
number of vertices v ∈ Xn such that g|v 6= 1. Then αg(n) can be computed by some linear
recursion, so its value is either bounded by a polynomial of some integer degree d ≥ 0, or
it grows exponentially. The elementary relation αgh(n) ≤ αg(n)+αh(n) shows that the set
of G of elements of polynomial activity of degree at most d is a subgroup. If all elements
of G (equivalently some generating set) have this property, we say that G has polynomial
activity of degree d, else we say that G has exponential activity.

The simplest class from this perspective are groups of bounded activity (that is, poly-
nomial of degree d = 0). The basilica group belongs to this class, as well as the iterated
monodromy group of every post-critically finite polynomial f ∈ C[z], by [BN08, Nek09].
Bartholdi, Kaimanovich and Nekrashevych showed that every self-similar group of bounded
activity is amenable [BKN10]. Their proof proceeds by embedding all such groups in a
family of “mother groups” designed to admit a self-similar random walk, and apply the
method of [BV05] (we later showed with Amir, Angel and Viráf [14] that all symmetric
finitely supported random walk on a group of bounded activity are Liouville). Amir, Angel
and Virág applied the same strategy (overcoming considerably more technical difficulties)
to show amenability of automata groups of linear activity [AAV13]. Note that groups of
bounded activity are always contracting, but this is not true for polynomial activity of
degree d ≥ 1.

A different method for proving amenability is based on the notion of extensively amenable
actions, introduced by Juschenko and Monod [JM13]. Using this method, a combination
of results of Juschenko, Nekrashevych and de la Salle [JNS16] and Nekrashevych, Pilgrim
and Thurston [NPT20] implies that all contracting self-similar groups having a wreath
recursion of polynomial activity are amenable. The method of extensive amenability does
not go through establishing the Liouville property for random walk, although random walk
is still present in it, as one of the main requirement to run this method is recurrence of the
random walk on induced on an orbit under some action of the group.

The results of [NPT20] also imply the following.
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Figure 3.1: The Julia set of z2 − 1
16z2

Theorem 3.4.1 ([NPT20]). If G is a contracting self-similar group of polynomial activity,
then ARdim(JG) = 1.

Thus Theorem 3.3.6 gives the following.

Corollary 3.4.2. Let G be a finitely generated contracting group with a wreath recursion
of polynomial activity. Then for every symmetric measure µ on G having a finite (1 + ε)-
moment for some ε > 0, the µ-random walk is Liouville.

Thus in this case amenability was known using the method of extensive amenability;
in contrast the Liouville property was known only in some more restricted cases and for
finitely supported symmetric measures.

Beyond this case, the main novelty of Theorem 3.3.4 is that it can be applied to contract-
ing groups G such that ARdim(JG) > 1, in which case amenability could not be established
before. A special case of this situation are iterated monodomy groups post-critically finite
rational function f ∈ C(z) whose Julia set is homeomorphic to the Sierpiński carpet. The
conformal dimension of such a Julia set can be arbitrarily close to 2, see [HP12]. In this
case the wreath recursion of the group necessarily has exponential activity, and might be
too complicated to work with directly. A new aspect of Theorem 3.3.4 is that, while all
previous results were based on the analysis of some explicit wreath recursion, the proof of
Theorem 3.3.4 avoids completely such computations and is based instead entirely on the
theory of iterated monodromy groups.

I conclude with a concrete example of wreath recursion for the iterated monodromy
group of a rational function with Sierpiński carpet Julia set. Consider the rational function
f(z) = z2− 1

16z2 . It’s Julia set is shown in Figure 3.1 and is homeomorphic to the Sierspiński
carpet.

An explicit wreath recursion for G = IMG(f) is computed in [11, §6.2]. Taking as
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alphabet X = {1, 2, 3, 4}, a generating set of the group G is given by

a = e(b, 1, c, 1),
b = (23)(14)(e, e, e, e)
c = (12)(34)(a, a−1, 1, 1).
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Chapter 4
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